1
|
Shi W, Yang H, Xie L, Yin XX, Zhang Y. A review of machine learning-based methods for predicting drug-target interactions. Health Inf Sci Syst 2024; 12:30. [PMID: 38617016 PMCID: PMC11014838 DOI: 10.1007/s13755-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.
Collapse
Affiliation(s)
- Wen Shi
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Linhai Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing, 102206 China
| | - Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Yanchun Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000 China
| |
Collapse
|
2
|
Zhang W, Tu S, Zhu X, Liu S. The application of advanced deep learning in biomedical graph analysis. Methods 2024; 231:115-117. [PMID: 39343054 DOI: 10.1016/j.ymeth.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Affiliation(s)
- Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, Wuhan 430070, China.
| | - Shikui Tu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Shichao Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Sun D, Macedonia C, Chen Z, Chandrasekaran S, Najarian K, Zhou S, Cernak T, Ellingrod VL, Jagadish HV, Marini B, Pai M, Violi A, Rech JC, Wang S, Li Y, Athey B, Omenn GS. Can Machine Learning Overcome the 95% Failure Rate and Reality that Only 30% of Approved Cancer Drugs Meaningfully Extend Patient Survival? J Med Chem 2024; 67:16035-16055. [PMID: 39253942 DOI: 10.1021/acs.jmedchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite implementing hundreds of strategies, cancer drug development suffers from a 95% failure rate over 30 years, with only 30% of approved cancer drugs extending patient survival beyond 2.5 months. Adding more criteria without eliminating nonessential ones is impractical and may fall into the "survivorship bias" trap. Machine learning (ML) models may enhance efficiency by saving time and cost. Yet, they may not improve success rate without identifying the root causes of failure. We propose a "STAR-guided ML system" (structure-tissue/cell selectivity-activity relationship) to enhance success rate and efficiency by addressing three overlooked interdependent factors: potency/specificity to the on/off-targets determining efficacy in tumors at clinical doses, on/off-target-driven tissue/cell selectivity influencing adverse effects in the normal organs at clinical doses, and optimal clinical doses balancing efficacy/safety as determined by potency/specificity and tissue/cell selectivity. STAR-guided ML models can directly predict clinical dose/efficacy/safety from five features to design/select the best drugs, enhancing success and efficiency of cancer drug development.
Collapse
Affiliation(s)
| | | | - Zhigang Chen
- LabBotics.ai, Palo Alto, California 94303, United States
| | | | | | - Simon Zhou
- Aurinia Pharmaceuticals Inc., Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | - Yan Li
- Translational Medicine and Clinical Pharmacology, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | | | | |
Collapse
|
4
|
Zhang B, Niu D, Zhang L, Zhang Q, Li Z. MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction. BMC Bioinformatics 2024; 25:275. [PMID: 39179993 PMCID: PMC11342675 DOI: 10.1186/s12859-024-05904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The rise of network pharmacology has led to the widespread use of network-based computational methods in predicting drug target interaction (DTI). However, existing DTI prediction models typically rely on a limited amount of data to extract drug and target features, potentially affecting the comprehensiveness and robustness of features. In addition, although multiple networks are used for DTI prediction, the integration of heterogeneous information often involves simplistic aggregation and attention mechanisms, which may impose certain limitations. RESULTS MSH-DTI, a deep learning model for predicting drug-target interactions, is proposed in this paper. The model uses self-supervised learning methods to obtain drug and target structure features. A Heterogeneous Interaction-enhanced Feature Fusion Module is designed for multi-graph construction, and the graph convolutional networks are used to extract node features. With the help of an attention mechanism, the model focuses on the important parts of different features for prediction. Experimental results show that the AUROC and AUPR of MSH-DTI are 0.9620 and 0.9605 respectively, outperforming other models on the DTINet dataset. CONCLUSION The proposed MSH-DTI is a helpful tool to discover drug-target interactions, which is also validated through case studies in predicting new DTIs.
Collapse
Affiliation(s)
- Beiyi Zhang
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071, Shandong, China
| | - Dongjiang Niu
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071, Shandong, China
| | - Lianwei Zhang
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071, Shandong, China
| | - Qiang Zhang
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071, Shandong, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Galluzzo Y. A comprehensive review of the data and knowledge graphs approaches in bioinformatics. COMPUTER SCIENCE AND INFORMATION SYSTEMS 2024; 21:1055-1075. [DOI: 10.2298/csis230530027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The scientific community is currently showing strong interest in constructing knowledge graphs from heterogeneous domains (genomic, pharmaceutical, clinical etc.). The main goal here is to support researchers in gaining an immediate overview of the biomedical and clinical data that can be utilized to construct and extend KGs. A in-depth overview of the available biomedical data and the latest applications of knowledge graphs, from the biological to the clinical context, is provided showing the most recent methods of representing biomedical knowledge with embeddings (KGEs). Furthermore, this review, differentiates biomedical databases based on their construction process (whether manually curated by experts or not), aiming to offer a detailed overview and guide researchers in selecting the appropriate database for their research considering to the specific project needs, available resources, and data complexity. In conclusion, the review highlights current challenges: integration of different knowledge graphs and the interpretability of predictions of new relations.
Collapse
|
6
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|