1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
İnci A, Ezgü FS, Tümer L. Advances in Immune Tolerance Induction in Enzyme Replacement Therapy. Paediatr Drugs 2024; 26:287-308. [PMID: 38664313 PMCID: PMC11074017 DOI: 10.1007/s40272-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/07/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that occur due to the either deficiency of an enzyme involved in a metabolic/biochemical pathway or other disturbances in the metabolic pathway including transport protein or activator protein deficiencies, cofactor deficiencies, organelle biogenesis, maturation or trafficking problems. These disorders are collectively significant due to their substantial impact on both the well-being and survival of affected individuals. In the quest for effective treatments, enzyme replacement therapy (ERT) has emerged as a viable strategy for patients with many of the lysosomal storage disorders (LSD) and enzyme substitution therapy in the rare form of the other inborn errors of metabolism including phenylketonuria and hypophosphatasia. However, a major challenge associated with enzyme infusion in patients with these disorders, mainly LSD, is the development of high antibody titres. Strategies focusing on immunomodulation have shown promise in inducing immune tolerance to ERT, leading to improved overall survival rates. The implementation of immunomodulation concurrent with ERT administration has also resulted in a decreased occurrence of IgG antibody development compared with cases treated solely with ERT. By incorporating the knowledge gained from current approaches and analysing the outcomes of immune tolerance induction (ITI) modalities from clinical and preclinical trials have demonstrated significant improvement in the efficacy of ERT. In this comprehensive review, the progress in ITI modalities is assessed, drawing insights from both clinical and preclinical trials. The focus is on evaluating the advancements in ITI within the context of IEM, specifically addressing LSDs managed through ERT.
Collapse
Affiliation(s)
- Aslı İnci
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey.
| | - Fatih Süheyl Ezgü
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
- Department of Paediatric Genetic, Gazi University School of Medicine, Ankara, Turkey
| | - Leyla Tümer
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
| |
Collapse
|
3
|
Rana J, Muñoz MM, Biswas M. Oral tolerance to prevent anti-drug antibody formation in protein replacement therapies. Cell Immunol 2022; 382:104641. [PMID: 36402002 PMCID: PMC9730862 DOI: 10.1016/j.cellimm.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Protein based therapeutics have successfully improved the quality of life for patients of monogenic disorders like hemophilia, Pompe and Fabry disease. However, a significant proportion of patients develop immune responses towards intravenously infused therapeutic protein, which can complicate or neutralize treatment and compromise patient safety. Strategies aimed at circumventing immune responses following therapeutic protein infusion can greatly improve therapeutic efficacy. In recent years, antigen-based oral tolerance induction has shown promising results in the prevention and treatment of autoimmune diseases, food allergies and can prevent anti-drug antibody formation to protein replacement therapies. Oral tolerance exploits regulatory mechanisms that are initiated in the gut associated lymphoid tissue (GALT) to promote active suppression of orally ingested antigen. In this review, we outline general perceptions and current knowledge about the mechanisms of oral tolerance, including tissue specific sites of tolerance induction and the cells involved, with emphasis on antigen presenting cells and regulatory T cells. We define several factors, such as cytokines and metabolites that impact the stability and expansion potential of these immune modulatory cells. We highlight preclinical studies that have been performed to induce oral tolerance to therapeutic proteins or enzymes for single gene disorders, such as hemophilia or Pompe disease. These studies mainly utilize a transgenic plant-based system for oral delivery of antigen in conjugation with fusion protein technology that favors the prevention of antigen degradation in the stomach while enhancing uptake in the small intestine by antigen presenting cells and regulatory T cell induction, thereby promoting antigen specific systemic tolerance.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maite Melero Muñoz
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Lenders M, Brand E. Mechanisms of Neutralizing Anti-drug Antibody Formation and Clinical Relevance on Therapeutic Efficacy of Enzyme Replacement Therapies in Fabry Disease. Drugs 2021; 81:1969-1981. [PMID: 34748189 PMCID: PMC8602155 DOI: 10.1007/s40265-021-01621-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A (AGAL/GLA) gene. The lysosomal accumulation of the substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) results in progressive renal failure, cardiomyopathy associated with cardiac arrhythmia, and recurrent strokes, significantly limiting life expectancy in affected patients. Current treatment options for FD include recombinant enzyme-replacement therapies (ERTs) with intravenous agalsidase-α (0.2 mg/kg body weight) or agalsidase-β (1 mg/kg body weight) every 2 weeks, facilitating cellular Gb3 clearance and an overall improvement of disease burden. However, ERT can lead to infusion-associated reactions, as well as the formation of neutralizing anti-drug antibodies (ADAs) in ERT-treated males, leading to an attenuation of therapy efficacy and thus disease progression. In this narrative review, we provide a brief overview of the clinical picture of FD and diagnostic confirmation. The focus is on the biochemical and clinical significance of neutralizing ADAs as a humoral response to ERT. In addition, we provide an overview of different methods for ADA measurement and characterization, as well as potential therapeutic approaches to prevent or eliminate ADAs in affected patients, which is representative for other ERT-treated lysosomal storage diseases.
Collapse
Affiliation(s)
- Malte Lenders
- Department of Internal Medicine D, Nephrology, Hypertension and Rheumatology, Interdisciplinary Fabry Center Münster (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| | - Eva Brand
- Department of Internal Medicine D, Nephrology, Hypertension and Rheumatology, Interdisciplinary Fabry Center Münster (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| |
Collapse
|
5
|
Desai AK, Li C, Rosenberg AS, Kishnani PS. Immunological challenges and approaches to immunomodulation in Pompe disease: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:285. [PMID: 31392197 PMCID: PMC6642943 DOI: 10.21037/atm.2019.05.27] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of acid alpha-glucosidase resulting in intralysosomal glycogen accumulation in multiple tissue types, especially cardiac, skeletal, and smooth muscle. Enzyme replacement therapy (ERT) with alglucosidase alfa has led to improved clinical outcomes and prolonged survival in patients with Pompe disease. While ERT has changed the natural course of Pompe disease, with many long-term survivors, several factors affect the response to ERT. Previous studies in Pompe disease have shown that IgG antibodies to ERT can lead to a decline in muscle strength, pulmonary function, and overall and ventilator-free survival. Additionally, antibody responses to ERT can also cause hypersensitivity reactions. Various strategies to prevent or eliminate the IgG antibody response have been attempted in patients with Pompe disease. A detailed literature search was performed to compile data regarding the consequences of IgG antibodies, clinical approaches to prevent or eliminate IgG antibodies in patients with Pompe disease, and to expand our understanding of new modalities being developed in non-clinical settings. All qualifying articles describing the impact of IgG antibodies on the response to ERT, immunomodulation in patients with Pompe disease, and non-clinical settings identified via a PubMed database search were included in the review. Here, we provide a comprehensive review of combination- and single-agent therapies that have been investigated in the context of immune tolerance induction to ERT in Pompe disease to date. Immunomodulation strategies that successfully induce immune tolerance to ERT have improved overall survival, especially reflected in the decreased number of ventilator-dependent or deceased cross-reactive immunologic material (CRIM)-negative infantile Pompe disease (IPD) patients due to development of IgG antibodies when treated with ERT alone. Immunomodulation in CRIM-positive patients at the time they receive ERT also results in a decrease in the development of IgG antibodies compared to cases treated with ERT alone. Lessons learned from current approaches, alongside results from trials of novel immunomodulation strategies, may provide important insights into the development of next-generation therapies.
Collapse
Affiliation(s)
- Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Cindy Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Amy S. Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| |
Collapse
|
6
|
Broomfield A, Jones SA, Hughes SM, Bigger BW. The impact of the immune system on the safety and efficiency of enzyme replacement therapy in lysosomal storage disorders. J Inherit Metab Dis 2016; 39:499-512. [PMID: 26883220 DOI: 10.1007/s10545-016-9917-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
In the light of clinical experience in infantile onset Pompe patients, the immunological impact on the tolerability and long-term efficacy of enzyme replacement therapy (ERT) for lysosomal storage disorders has come under renewed scrutiny. This article details the currently proposed immunological mechanisms involved in the development of anti-drug antibodies and the current therapies used in their treatment. Given the current understanding of the adaptive immune response, it focuses particularly on T cell dependent mechanisms and the paradigm of using lymphocytic negative selection as a predictor of antibody formation. This concept originally postulated in the 1970s, stipulated that the genotypically determined lack of production or production of a variant protein determines an individual's lymphocytic repertoire. This in turn is the key factor in determining the potential severity of an individual's immunological response to ERT. It also highlights the need for immunological assay standardization particularly those looking at describing the degree of functional impact, robust biochemical or clinical endpoints and detailed patient subgroup identification if the true evaluations of impact are to be realised.
Collapse
Affiliation(s)
- A Broomfield
- Willink Biochemical genetics unit, Manchester center for genomic medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, M13 9WL, UK.
| | - S A Jones
- Willink Biochemical genetics unit, Manchester center for genomic medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, M13 9WL, UK
| | - S M Hughes
- Department of Immunology, Royal Manchester children's Hospital, Central Manchester Foundation Trust, Manchester, M13 9WL, UK
| | - B W Bigger
- Stem Cell & Neurotherapies Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
7
|
Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15053. [PMID: 26858964 PMCID: PMC4729315 DOI: 10.1038/mtm.2015.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute , Stockholm, Sweden
| | - Manuela Corti
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
8
|
Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1023-32. [PMID: 26053072 PMCID: PMC4578979 DOI: 10.1111/pbi.12413] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/25/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation.
Collapse
Affiliation(s)
- Jin Su
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Phillip A. Doerfler
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J. Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland W. Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
|
10
|
Nayak S, Doerfler PA, Porvasnik SL, Cloutier DD, Khanna R, Valenzano KJ, Herzog RW, Byrne BJ. Immune responses and hypercoagulation in ERT for Pompe disease are mutation and rhGAA dose dependent. PLoS One 2014; 9:e98336. [PMID: 24897114 PMCID: PMC4045583 DOI: 10.1371/journal.pone.0098336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/01/2014] [Indexed: 01/01/2023] Open
Abstract
Enzyme replacement therapy (ERT) with recombinant human acid-α-glucosidase (rhGAA) is the only FDA approved therapy for Pompe disease. Without ERT, severely affected individuals (early onset) succumb to the disease within 2 years of life. A spectrum of disease severity and progression exists depending upon the type of mutation in the GAA gene (GAA), which in turn determines the amount of defective protein produced and its enzymatic activity. A large percent of the early onset patients are also cross reactive immunological material negative (CRIM-) and develop high titer immune responses to ERT with rhGAA. New insights from our studies in pre-clinical murine models reveal that the type of Gaa mutation has a profound effect on the immune responses mounted against ERT and the associated toxicities, including activation of clotting factors and disseminated intravascular coagulation (DIC). Additionally, the mouse strain affects outcomes, suggesting the influence of additional genetic components or modifiers. High doses of rhGAA (20 mg/kg) are currently required to achieve therapeutic benefit. Our studies indicate that lower enzyme doses reduce the antibody responses to rhGAA, reduce the incidence of immune toxicity and avoid ERT-associated anaphylaxis. Therefore, development of rhGAA with increased efficacy is warranted to limit immunotoxicities.
Collapse
Affiliation(s)
- Sushrusha Nayak
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, Center for Infection Medicine, Karolinska Institute, Stockholm, Sweden
- * E-mail: (SN); (BJB)
| | - Phillip A. Doerfler
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
| | - Stacy L. Porvasnik
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
| | - Denise D. Cloutier
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
| | - Richie Khanna
- Amicus Therapeutics Inc., Cranbury, New Jersey, United States of America
| | - Ken J. Valenzano
- Amicus Therapeutics Inc., Cranbury, New Jersey, United States of America
| | - Roland W. Herzog
- Department of Pediatrics, Cellular and Molecular Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (SN); (BJB)
| |
Collapse
|
11
|
Wang X, Sherman A, Liao G, Leong KW, Daniell H, Terhorst C, Herzog RW. Mechanism of oral tolerance induction to therapeutic proteins. Adv Drug Deliv Rev 2013; 65:759-73. [PMID: 23123293 PMCID: PMC3578149 DOI: 10.1016/j.addr.2012.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/24/2012] [Indexed: 12/20/2022]
Abstract
Oral tolerance is defined as the specific suppression of humoral and/or cellular immune responses to an antigen by administration of the same antigen through the oral route. Due to its absence of toxicity, easy administration, and antigen specificity, oral tolerance is a very attractive approach to prevent unwanted immune responses that cause a variety of diseases or that complicate treatment of a disease. Many researchers have induced oral tolerance to efficiently treat autoimmune and inflammatory diseases in different animal models. However, clinical trials yielded limited success. Thus, understanding the mechanisms of oral tolerance induction to therapeutic proteins is critical for paving the way for clinical development of oral tolerance protocols. This review will summarize progress on understanding the major underlying tolerance mechanisms and contributors, including antigen presenting cells, regulatory T cells, cytokines, and signaling pathways. Potential applications, examples for therapeutic proteins and disease targets, and recent developments in delivery methods are discussed.
Collapse
Affiliation(s)
- Xiaomei Wang
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610
| | | | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Henry Daniell
- Dept. Molecular Biology and Microbiology, University of Central Florida, Orlando, FL, 32816
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
12
|
Administration of anti-CD3 antibodies modulates the immune response to an infusion of α-glucosidase in mice. Mol Ther 2012; 20:1924-31. [PMID: 22871665 DOI: 10.1038/mt.2012.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal and human studies of enzyme replacement therapy (ERT) for Pompe disease (PD) have indicated that antibodies (Abs) generated against infused recombinant human α-glucosidase (rhGAA) can have a negative impact on the therapeutic outcome and cause hypersensitivity reactions. We showed that parenteral administration of anti-CD3 Abs into mice can reduce the titer of anti-human GAA Abs in wild-type mice administered the enzyme. Mice that had been treated with anti-CD3 Abs and then subjected to a secondary challenge with rhGAA showed a lower increase in Ab titers than control mice. Moreover, the administration of anti-CD3 Abs also reduced the levels of pre-existing Abs. Treatment with anti-CD3 Abs also prevented a lethal hypersensitivity reaction and reduced the Ab titers in a mouse model of PD. Mice treated with anti-CD3 Abs showed reduced numbers of CD4(+) and CD8(+) cells, and an increased ratio of CD4(+)CD25(+)/CD4(+) and CD4(+)CD25(+)FoxP3(+)/CD4(+) cells. When the CD4(+)CD25(+) cells were depleted using anti-CD25 Abs, the observed reduction in Abs against the enzyme by anti-CD3 Abs was abrogated. This suggests that CD4(+)CD25(+) cells are important for the immune suppressive activity of anti-CD3 Abs. In summary, anti- CD3 Abs are useful for inducing immune tolerance to ERT for PD.
Collapse
|