1
|
Lau YK, Iyer K, Shetye S, Friday CS, Dodge GR, Hast MW, Casal ML, Gawri R, Smith LJ. Evaluation of tendon and ligament microstructure and mechanical properties in a canine model of mucopolysaccharidosis I. J Orthop Res 2024; 42:1409-1419. [PMID: 38368531 PMCID: PMC11161329 DOI: 10.1002/jor.25813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Mucopolysaccharidosis (MPS) I is a lysosomal storage disorder characterized by deficient alpha-l-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a strong clinical need for improved treatment approaches that specifically target joint tissues; however, their development is hampered by poor understanding of underlying disease pathophysiology, including how pathological changes to component tissues contribute to overall joint dysfunction. Ligaments and tendons, in particular, have received very little attention, despite the critical roles of these tissues in joint stability and biomechanical function. The goal of this study was to leverage the naturally canine model to undertake functional and structural assessments of the anterior (cranial) cruciate ligament (CCL) and Achilles tendon in MPS I. Tissues were obtained postmortem from 12-month-old MPS I and control dogs and tested to failure in uniaxial tension. Both CCLs and Achilles tendons from MPS I animals exhibited significantly lower stiffness and failure properties compared to those from healthy controls. Histological examination revealed multiple pathological abnormalities, including collagen fiber disorganization, increased cellularity and vascularity, and elevated GAG content in both tissues. Clinically, animals exhibited mobility deficits, including abnormal gait, which was associated with hyperextensibility of the stifle and hock joints. These findings demonstrate that pathological changes to both ligaments and tendons contribute to abnormal joint function in MPS I, and suggest that effective clinical management of joint disease in patients should incorporate treatments targeting these tissues.
Collapse
Affiliation(s)
- Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Keerthana Iyer
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Snehal Shetye
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Chet S. Friday
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - George R. Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Mechano Therapeutics LLC, 3401 Grays Ferry Ave, Philadelphia, PA 19146
| | - Michael W. Hast
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Margret L. Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104 USA
| | - Rahul Gawri
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Lachlan J. Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
2
|
Mucopolysaccharidosis: What Pediatric Rheumatologists and Orthopedics Need to Know. Diagnostics (Basel) 2022; 13:diagnostics13010075. [PMID: 36611367 PMCID: PMC9818175 DOI: 10.3390/diagnostics13010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis (MPS) is a group of disorders caused by the reduced or absent activity of enzymes involved in the glycosaminoglycans (GAGs) degradation; the consequence is the progressive accumulation of the substrate (dermatan, heparan, keratan or chondroitin sulfate) in the lysosomes of cells belonging to several tissues. The rarity, the broad spectrum of manifestations, the lack of strict genotype-phenotype association, and the progressive nature of MPS make diagnosing this group of conditions challenging. Musculoskeletal involvement represents a common and prominent feature of MPS. Joint and bone abnormalities might be the main clue for diagnosing MPS, especially in attenuated phenotypes; therefore, it is essential to increase the awareness of these conditions among the pediatric rheumatology and orthopedic communities since early diagnosis and treatment are crucial to reduce the disease burden of these patients. Nowadays, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for some MPS types. We describe the musculoskeletal characteristics of MPS patients through a literature review of MPS cases misdiagnosed as having rheumatologic or orthopedic conditions.
Collapse
|
3
|
Lau YK, Peck SH, Arginteanu T, Wu M, Lin M, Shore EM, Klein PS, Casal ML, Smith LJ. Effects of lithium administration on vertebral bone disease in mucopolysaccharidosis I dogs. Bone 2022; 154:116237. [PMID: 34695616 PMCID: PMC8671266 DOI: 10.1016/j.bone.2021.116237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidosis (MPS) I is a lysosomal storage disease characterized by deficient activity of the enzyme alpha-L-iduronidase, leading to abnormal accumulation of heparan and dermatan sulfate glycosaminoglycans in cells and tissues. Patients commonly exhibit progressive skeletal abnormalities, in part due to failures of endochondral ossification during postnatal growth. Previously, using the naturally-occurring canine model, we showed that bone and cartilage cells in MPS I exhibit elevated lysosomal storage from an early age and that animals subsequently exhibit significantly diminished vertebral trabecular bone formation. Wnts are critical regulators of endochondral ossification that depend on glycosaminoglycans for signaling. The objective of this study was to examine whether lithium, a glycogen synthase kinase-3 inhibitor and stimulator of Wnt/beta-catenin signaling, administered during postnatal growth could attenuate progression of vertebral trabecular bone disease in MPS I. MPS I dogs were treated orally with therapeutic levels of lithium carbonate from 14 days to 6 months-of-age. Untreated heterozygous and MPS I dogs served as controls. Serum was collected at 3 and 6 months for assessment of bone turnover markers. At the study end point, thoracic vertebrae were excised and assessed using microcomputed tomography and histology. Lithium-treated animals exhibited significantly improved trabecular spacing, number and connectivity density, and serum bone-specific alkaline phosphatase levels compared to untreated animals. Growth plates from lithium-treated animals exhibited increased numbers of hypertrophic chondrocytes relative to both untreated MPS I and heterozygous animals. These findings suggest that bone and cartilage cells in MPS I are still capable of responding to exogenous osteogenic signals even in the presence of significant lysosomal storage, and that targeted osteogenic therapies may represent a promising approach for attenuating bone disease progression in MPS I.
Collapse
Affiliation(s)
- Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sun H Peck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Toren Arginteanu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meilun Wu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter S Klein
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|