1
|
Zhu Y, Wu K, Wen H. Functional analysis of a novel homozygous missense IVD gene variant: a case report with dual genetic diagnoses. Front Pediatr 2025; 13:1494530. [PMID: 39995896 PMCID: PMC11847699 DOI: 10.3389/fped.2025.1494530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background Genomic or exome sequencing is beneficial for identifying more than one pathogenic variation causing blended atypical and/or severe phenotypes. Herein, we are the first to report a 5-year-old boy with the blended phenotypes of infantile hypotonia, severe neurodevelopmental disorder, patent ductus arteriosus, cryptorchidism, obesity, distinctive facial features, and elevated isovaleryl carnitine. Methods Trio-based whole-exome sequencing was performed on genomic DNA from peripheral blood samples from the boy and his parents. Functional analysis of the IVD variant in vitro was performed. Mutant IVD gene pcDNA3.1(+)-MUT-3xFlag and control pcDNA3.1(+)-WT-3xFlag mammalian expression vectors were constructed. Both vectors were transformed into HEK293T cells. The assays of relative IVD gene mRNA expression, IVD protein expression, and enzymatic activity were used. Results Whole-exome sequencing identified a novel homozygous missense variant in the IVD gene (NM_002225.5) c.1006T>C (p.Cys336Arg) within a region of homozygosity of 15q11.2-q21.3. Our in vitro functional and computer simulation findings revealed that this variant was associated with haploinsufficiency, which resulted in dramatically reducing the formation of IVD protein due to unstable mutant protein and not a lack of mRNA expression. Conclusion The boy was diagnosed with the dual genetic disorders of Prader-Willi syndrome and isovaleric acidemia. This case provides a useful reference for genetic counseling for complex and diverse clinical phenotypes. The presence of two or more likely pathogenic or pathogenic variations in an individual with neurodevelopmental phenotypes is not an "exceptional" phenomenon.
Collapse
Affiliation(s)
- Yuying Zhu
- Prenatal Diagnosis Center, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China
| | - Ke Wu
- Laboratory of Prenatal Diagnosis Center, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China
| | - Hanying Wen
- Prenatal Diagnosis Center, Quzhou Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
2
|
Muñoz-Pujol G, Ugarteburu O, Segur-Bailach E, Moliner S, Jurado S, Garrabou G, Guitart-Mampel M, García-Villoria J, Artuch R, Fons C, Ribes A, Tort F. CRISPR/Cas9-based functional genomics strategy to decipher the pathogenicity of genetic variants in inherited metabolic disorders. J Inherit Metab Dis 2023; 46:1029-1042. [PMID: 37718653 DOI: 10.1002/jimd.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.
Collapse
Affiliation(s)
- Gerard Muñoz-Pujol
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Eulàlia Segur-Bailach
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Sonia Moliner
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Susana Jurado
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER, Esplúgues de Llobregat, Barcelona, Spain
| | - Carme Fons
- Neurology Department, Fetal, Neonatal Neurology and Early Epilepsy Unit, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| |
Collapse
|
3
|
Mütze U, Henze L, Schröter J, Gleich F, Lindner M, Grünert SC, Spiekerkoetter U, Santer R, Thimm E, Ensenauer R, Weigel J, Beblo S, Arélin M, Hennermann JB, Marquardt I, Freisinger P, Krämer J, Dieckmann A, Weinhold N, Schiergens KA, Maier EM, Hoffmann GF, Garbade SF, Kölker S. Isovaleric aciduria identified by newborn screening: Strategies to predict disease severity and stratify treatment. J Inherit Metab Dis 2023; 46:1063-1077. [PMID: 37429829 DOI: 10.1002/jimd.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Newborn screening (NBS) allows early identification of individuals with rare disease, such as isovaleric aciduria (IVA). Reliable early prediction of disease severity of positively screened individuals with IVA is needed to guide therapeutic decision, prevent life-threatening neonatal disease manifestation in classic IVA and over-medicalization in attenuated IVA that may remain asymptomatic. We analyzed 84 individuals (median age at last study visit 8.5 years) with confirmed IVA identified by NBS between 1998 and 2018 who participated in the national, observational, multicenter study. Screening results, additional metabolic parameters, genotypes, and clinical phenotypic data were included. Individuals with metabolic decompensation showed a higher median isovalerylcarnitine (C5) concentration in the first NBS sample (10.6 vs. 2.7 μmol/L; p < 0.0001) and initial urinary isovalerylglycine concentration (1750 vs. 180 mmol/mol creatinine; p = 0.0003) than those who remained asymptomatic. C5 was in trend inversely correlated with full IQ (R = -0.255; slope = -0.869; p = 0.0870) and was lower for the "attenuated" variants compared to classic genotypes [median (IQR; range): 2.6 μmol/L (2.1-4.0; 0.7-6.4) versus 10.3 μmol/L (7.4-13.1; 4.3-21.7); N = 73]. In-silico prediction scores (M-CAP, MetaSVM, and MetaLR) correlated highly with isovalerylglycine and ratios of C5 to free carnitine and acetylcarnitine, but not sufficiently with clinical endpoints. The results of the first NBS sample and biochemical confirmatory testing are reliable early predictors of the clinical course of IVA, facilitating case definition (attenuated versus classic IVA). Prediction of attenuated IVA is supported by the genotype. On this basis, a reasonable algorithm has been established for neonates with a positive NBS result for IVA, with the aim of providing the necessary treatment immediately, but whenever possible, adjusting the treatment to the individual severity of the disease.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Lucy Henze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Child Nutrition, Max-Rubner-Institut, Karlsruhe, Germany
| | - Johannes Weigel
- Praxis für Kinder- und Jugendmedizin, Endokrinologie und Stoffwechsel, Augsburg, Germany
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Maria Arélin
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Iris Marquardt
- Department of Child Neurology, Children's Hospital Oldenburg, Oldenburg, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Dieckmann
- Center for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Natalie Weinhold
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Center of Chronically Sick Children, Berlin, Germany
| | | | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Kishita Y, Sugiura A, Onuki T, Ebihara T, Matsuhashi T, Shimura M, Fushimi T, Ichino N, Nagatakidani Y, Nishihata H, Nitta KR, Yatsuka Y, Imai-Okazaki A, Wu Y, Osaka H, Ohtake A, Murayama K, Okazaki Y. Strategic validation of variants of uncertain significance in ECHS1 genetic testing. J Med Genet 2023; 60:1006-1015. [PMID: 37055166 DOI: 10.1136/jmg-2022-109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.
Collapse
Affiliation(s)
- Yoshihito Kishita
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ayumu Sugiura
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Takanori Onuki
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Tomohiro Ebihara
- Department of Neonatology, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Tetsuro Matsuhashi
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Noriko Ichino
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshie Nagatakidani
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Hitomi Nishihata
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yibo Wu
- Chemical Biology Mass Spectrometry Platform (CHEMBIOMS), Faculty of Sciences, University of Geneva, Geneve, Switzerland
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Moroyama, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
- Center for Medical Genetics, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
D’Annibale OM, Koppes EA, Sethuraman M, Bloom K, Mohsen AW, Vockley J. Characterization of exonic variants of uncertain significance in very long-chain acyl-CoA dehydrogenase identified through newborn screening. J Inherit Metab Dis 2022; 45:529-540. [PMID: 35218577 PMCID: PMC9090957 DOI: 10.1002/jimd.12492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive disease resulting from mutations in the ACADVL gene and is among the disorders tested for in newborn screening (NBS). Confirmatory sequencing following suspected VLCADD NBS results often identifies variants of uncertain significance (VUS) in the ACADVL gene, leading to uncertainty of diagnosis and providing effective treatment regimen. Currently, ACADVL has >300 VUSs in the ClinVar database that requiring characterization to determine potential pathogenicity. In this study, CRISPR/Cas9 genome editing was used to knock out ACADVL in HEK293T cells, and targeted deletion was confirmed by droplet digital polymerase chain reaction (PCR). No VLCAD protein was detected and an 84% decrease in enzyme activity using the electron transfer flavoprotein fluorescence reduction assay and C21-CoA as substrate was observed compared to control. Plasmids containing control or variant ACADVL coding sequence were transfected into the ACADVL null HEK293T. While transfection of control ACADVL restored VLCAD protein and enzyme activity, cells expressing the VLCAD Val283Ala mutant had 18% VLCAD enzyme activity and reduced protein compared to control. VLCAD Ile420Leu, Gly179Arg, and Gln406Pro produced protein comparable to control but 25%, 4%, and 5% VLCAD enzyme activity, respectively. Leu540Pro and Asp570_Ala572dup had reduced VLCAD protein and 10% and 3% VLCAD enzyme activity, respectively. VLCADD fibroblasts containing the same variations had decreased VLCAD protein and activity comparable to the transfection experiments. Generating ACADVL null HEK293T cell line allowed functional studies to determine pathogenicity of ACADVL exonic variants. This approach can be applied to multiple genes for other disorders identified through NBS.
Collapse
Affiliation(s)
- Olivia M. D’Annibale
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Erik A. Koppes
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224
| | - Meena Sethuraman
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Kaitlyn Bloom
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224
| | - Al-Walid Mohsen
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| |
Collapse
|
6
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|