1
|
Malheiros JM, Reolon HG, Bosquini BG, Baldi F, Lourenco D, Fragomeni BO, Silva RMO, Paz CCP, Stafuzza NB. Identification of biological pathways and putative candidate genes for residual feed intake in a tropically adapted beef cattle breed by plasma proteome analysis. J Proteomics 2025; 312:105361. [PMID: 39638144 DOI: 10.1016/j.jprot.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This study identified potential biomarkers for feed efficiency by blood plasma proteome analysis of a tropically adapted beef cattle breed. Two experimental groups were selected based on residual feed intake (RFI). The proteome was investigated by LC-MS/MS in a data-dependent acquisition mode. After quality control, 123 differentially abundant proteins (DAPs) were identified between the two experimental groups. Among DAPs with the highest absolute log-fold change values, the PRDM2, KRT5, UGGT1, DENND5B, B2M, SLC44A2, SLC7A2, PTPRC, and FETUB were highlighted as potential biomarkers because of their functions that may contribute to RFI. Furthermore, functional enrichment analysis revealed several biological processes, molecular functions and pathways that contributes to RFI, such as cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates. Protein-protein interaction analysis identified 32 and 11 DAPs as important nodes based on their interactions in the high- and low-RFI groups, respectively. This study represents the first comprehensive profiling of the blood plasma proteome of a tropically adapted beef cattle breed and provides valuable insights into the potential roles of these DAPs in key biological processes and pathways, contributing to our understanding of the mechanisms underlying feed efficiency in tropically adapted beef cattle. SIGNIFICANCE: LC-MS/MS analysis was performed to investigate changes in the blood plasma proteome associated with residual feed intake (RFI) in a tropically adapted beef cattle breed (Bos taurus taurus). Some putative biomarkers were identified to distinguish the high-RFI to low-RFI animals, based on their log-fold change value or on their protein-protein interaction network, which provide helpful sources in developing novel selection strategies for breeding programs. Our findings also revealed valuable insights into the metabolic pathways and biological processes that contribute to RFI in beef cattle, such as those closely linked to cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates.
Collapse
Affiliation(s)
- Jessica M Malheiros
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Bruna G Bosquini
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900 Jaboticabal, SP, Brazil
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USA.
| | - Breno O Fragomeni
- Department of Animal Science, University of Connecticut, 06269 Storrs, CT, USA.
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil.
| |
Collapse
|
2
|
Zhang Y, Yang P, Zhang X, Liu S, Lou K. Asprosin: its function as a novel endocrine factor in metabolic-related diseases. J Endocrinol Invest 2024; 47:1839-1850. [PMID: 38568373 DOI: 10.1007/s40618-024-02360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/09/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND PURPOSE Asprosin was discovered as a new endocrine hormone originating from fibrillin-1 cleavage that plays a crucial role in various metabolic-related diseases, such as obesity, nonalcoholic fatty liver disease (NAFLD), diabetes, polycystic ovary syndrome (PCOS), and cardiovascular diseases. The purpose of this review is to describe the recent advancements of asprosin. METHOD Narrative review. RESULT This comprehensive review explores its tissue-specific functions, focusing on white adipose tissue, liver, hypothalamus, testis, ovary, heart, pancreas, skeletal muscle, and kidney. CONCLUSION Asprosin is a multifaceted protein with tissue-specific roles in various physiological and pathological processes. Further research is needed to fully understand the mechanisms and potential of asprosin as a therapeutic target. These insights could provide new directions for treatments targeting metabolic-related diseases.
Collapse
Affiliation(s)
- Y Zhang
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China
| | - P Yang
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China
| | - X Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, China
| | - S Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, 250013, Shandong Province, China.
| | - K Lou
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong Province, China.
| |
Collapse
|
3
|
Xu ZQ, Li XZ, Zhu R, Ge R, Wei H, Shi HW, Wang Z, Yang C, Yang YW, Lu XJ, Chen AD, Zhu GQ, Tan X. Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling. J Hypertens 2024; 42:1427-1439. [PMID: 38690935 DOI: 10.1097/hjh.0000000000003751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling. Asprosin, a newly discovered protein hormone, is involved in metabolic diseases. Little is known about the roles of asprosin in cardiovascular diseases. This study focused on the role and mechanism of asprosin on VSMC proliferation and migration, and vascular remodeling in a rat model of hypertension. METHODS AND RESULTS VSMCs were obtained from the aortic media of 8-week-old male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Asprosin was upregulated in the VSMCs of SHR. For in vitro studies, asprosin promoted VSMC proliferation and migration of WKY and SHR, and increased Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, NOX1/2/4 protein expressions and superoxide production. Knockdown of asprosin inhibited the proliferation, migration, NOX activity, NOX1/2 expressions and superoxide production in the VSMCs of SHR. The roles of asprosin in promoting VSMC proliferation and migration were not affected by hydrogen peroxide scavenger, but attenuated by superoxide scavenger, selective NOX1 or NOX2 inhibitor. Toll-like receptor 4 (TLR4) was upregulated in SHR, TLR4 knockdown inhibited asprosin overexpression-induced proliferation, migration and oxidative stress in VSMCs of WKY and SHR. Asprosin was upregulated in arteries of SHR, and knockdown of asprosin in vivo not only attenuated oxidative stress and vascular remodeling in aorta and mesentery artery, but also caused a subsequent persistent antihypertensive effect in SHR. CONCLUSIONS Asprosin promotes VSMC proliferation and migration via NOX-mediated superoxide production. Inhibition of endogenous asprosin expression attenuates VSMC proliferation and migration, and vascular remodeling of SHR.
Collapse
Affiliation(s)
- Zhi-Qin Xu
- Emergency Department
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University
| | - Xiu-Zhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University
| | | | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | - Xue-Juan Lu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Tan
- Emergency Department
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
4
|
Cao M, Duan Z, Wang X, Gong P, Zhang L, Ruan B. Curcumin Promotes Diabetic Foot Ulcer Wound Healing by Inhibiting miR-152-3p and Activating the FBN1/TGF-β Pathway. Mol Biotechnol 2024; 66:1266-1278. [PMID: 38206528 PMCID: PMC11087368 DOI: 10.1007/s12033-023-01027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The objective of this study was to investigate the mechanism of curcumin in diabetic foot ulcer (DFU) wound healing. A DFU rat model was established, and fibroblasts were cultured in a high-glucose (HG) environment to create a cell model. Various techniques, including Western blot, RT‒qPCR, flow cytometry, Transwell, cell scratch test and H&E staining, were employed to measure the levels of relevant genes and proteins, as well as to assess cell proliferation, apoptosis, migration, and pathological changes. The results showed that miR-152-3p was overexpressed in DFU patients, while FBN1 was underexpressed. Curcumin was found to inhibit fibroblast apoptosis, promote proliferation, migration, and angiogenesis in DFU rats, and accelerate wound healing in DFU rats. In addition, overexpression of miR-152-3p weakened the therapeutic effect of curcumin, while overexpression of FBN1 reversed the effects of the miR-152-3p mimic. Further investigations into the underlying mechanisms revealed that curcumin expedited wound healing in DFU rats by restoring the FBN1/TGF-β pathway through the inhibition of miR-152-3p. In conclusion, curcumin can suppress the activity of miR-152-3p, which, in turn, leads to the rejuvenation of the FBN1/TGF-β pathway and accelerates DFU wound healing.
Collapse
Affiliation(s)
- Mei Cao
- Endocrinology Department, The Third People's Hospital of Yunnan Province, Kunming, 650011, Yunnan, China
| | - Zhisheng Duan
- Endocrinology Department, The Third People's Hospital of Yunnan Province, Kunming, 650011, Yunnan, China
| | - Xianting Wang
- Endocrinology Department, Clinical Medical College of Dali University, Dali, 671000, Yunnan, China
| | - Pan Gong
- Endocrinology Department, Clinical Medical College of Dali University, Dali, 671000, Yunnan, China
| | - Limei Zhang
- Endocrinology Department, Clinical Medical College of Dali University, Dali, 671000, Yunnan, China
| | - Bin Ruan
- Occupational Diseases Department, The Third People's Hospital of Yunnan Province, No. 292 Beijing Road, Guandu District, Kunming, 650011, Yunnan, China.
| |
Collapse
|
5
|
Orton S, Karkia R, Mustafov D, Gharanei S, Braoudaki M, Filipe A, Panfilov S, Saravi S, Khan N, Kyrou I, Karteris E, Chatterjee J, Randeva HS. In Silico and In Vitro Mapping of Receptor-Type Protein Tyrosine Phosphatase Receptor Type D in Health and Disease: Implications for Asprosin Signalling in Endometrial Cancer and Neuroblastoma. Cancers (Basel) 2024; 16:582. [PMID: 38339334 PMCID: PMC10854520 DOI: 10.3390/cancers16030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Protein Tyrosine Phosphatase Receptor Type D (PTPRD) is involved in the regulation of cell growth, differentiation, and oncogenic transformation, as well as in brain development. PTPRD also mediates the effects of asprosin, which is a glucogenic hormone/adipokine derived following the cleavage of the C-terminal of fibrillin 1. Since the asprosin circulating levels are elevated in certain cancers, research is now focused on the potential role of this adipokine and its receptors in cancer. As such, in this study, we investigated the expression of PTPRD in endometrial cancer (EC) and the placenta, as well as in glioblastoma (GBM). METHODS An array of in silico tools, in vitro models, tissue microarrays (TMAs), and liquid biopsies were employed to determine the gene and protein expression of PTPRD in healthy tissues/organs and in patients with EC and GBM. RESULTS PTPRD exhibits high expression in the occipital lobe, parietal lobe, globus pallidus, ventral thalamus, and white matter, whereas in the human placenta, it is primarily localised around the tertiary villi. PTPRD is significantly upregulated at the mRNA and protein levels in patients with EC and GBM compared to healthy controls. In patients with EC, PTPRD is significantly downregulated with obesity, whilst it is also expressed in the peripheral leukocytes. The EC TMAs revealed abundant PTPRD expression in both low- and high-grade tumours. Asprosin treatment upregulated the expression of PTPRD only in syncytialised placental cells. CONCLUSIONS Our data indicate that PTPRD may have potential as a biomarker for malignancies such as EC and GBM, further implicating asprosin as a potential metabolic regulator in these cancers. Future studies are needed to explore the potential molecular mechanisms/signalling pathways that link PTPRD and asprosin in cancer.
Collapse
Affiliation(s)
- Sophie Orton
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (S.O.); (S.G.); (I.K.)
| | - Rebecca Karkia
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
| | - Denis Mustafov
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9JA, UK;
| | - Seley Gharanei
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (S.O.); (S.G.); (I.K.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9JA, UK;
| | - Alice Filipe
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
| | - Suzana Panfilov
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
| | - Sayeh Saravi
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
| | - Nabeel Khan
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (S.O.); (S.G.); (I.K.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 1GB, UK
- Laboratory of Dietetics and Quality of Life, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
| | - Jayanta Chatterjee
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (R.K.); (D.M.); (A.F.); (S.P.); (S.S.); (N.K.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| | - Harpal S. Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (S.O.); (S.G.); (I.K.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
6
|
Summers KM. Genetic models of fibrillinopathies. Genetics 2024; 226:iyad189. [PMID: 37972149 PMCID: PMC11021029 DOI: 10.1093/genetics/iyad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues. A number of mouse models have been created in an attempt to replicate the human phenotype, although all have limitations. There are also natural bovine models and engineered models in pig and rabbit. Variants in FBN2 encoding fibrillin-2 cause congenital contractural arachnodactyly and mouse models for this condition have also been produced. In most animals, including birds, reptiles, and amphibians, there is a third fibrillin, fibrillin-3 (FBN3 gene) for which the creation of models has been difficult as the gene is degenerate and nonfunctional in mice and rats. Other eukaryotes such as the nematode C. elegans and zebrafish D. rerio have a gene with some homology to fibrillins and models have been used to discover more about the function of this family of proteins. This review looks at the phenotype, inheritance, and relevance of the various animal models for the different fibrillinopathies.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
7
|
Zhang Y, Shen Y, Jin P, Zhu B, Lin Y, Jiang T, Huang X, Wang Y, Zhao Z, Li S. A trade-off in evolution: the adaptive landscape of spiders without venom glands. Gigascience 2024; 13:giae048. [PMID: 39101784 PMCID: PMC11299198 DOI: 10.1093/gigascience/giae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Venom glands play a key role in the predation and defense strategies of almost all spider groups. However, the spider family Uloboridae lacks venom glands and has evolved an adaptive strategy: they excessively wrap their prey directly with spider silk instead of paralyzing it first with toxins. This shift in survival strategy is very fascinating, but the genetic underpinnings behind it are poorly understood. RESULTS Spanning multiple spider groups, we conducted multiomics analyses on Octonoba sinensis and described the adaptive evolution of the Uloboridae family at the genome level. We observed the coding genes of myosin and twitchin in muscles are under positive selection, energy metabolism functions are enhanced, and gene families related to tracheal development and tissue mechanical strength are expanded or emerged, all of which are related to the unique anatomical structure and predatory behavior of spiders in the family Uloboridae. In addition, we also scanned the elements that are absent or under relaxed purifying selection, as well as toxin gene homologs in the genomes of 2 species in this family. The results show that the absence of regions and regions under relaxed selection in these spiders' genomes are concentrated in areas related to development and neurosystem. The search for toxin homologs reveals possible gene function shift between toxins and nontoxins and confirms that there are no reliable toxin genes in the genome of this group. CONCLUSIONS This study demonstrates the trade-off between different predation strategies in spiders, using either chemical or physical strategy, and provides insights into the possible mechanism underlying this trade-off. Venomless spiders need to mobilize multiple developmental and metabolic pathways related to motor function and limb mechanical strength to cover the decline in adaptability caused by the absence of venom glands.
Collapse
Affiliation(s)
- Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Langfang 065000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yejie Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Langfang 065000, China
| | - Tongyao Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xianting Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhe Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Sun Y, Chen X, Chen L, Bao B, Li C, Zhou Y. MFAP2 promotes HSCs activation through FBN1/TGF-β/Smad3 pathway. J Cell Mol Med 2023; 27:3235-3246. [PMID: 37635348 PMCID: PMC10623529 DOI: 10.1111/jcmm.17884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yonghong Sun
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Department of PediatricsGansu Province People's HospitalLanzhouPeople's Republic of China
| | - Xingxing Chen
- Department of PediatricsGansu Province People's HospitalLanzhouPeople's Republic of China
| | - Lili Chen
- The First School of Clinical MedicineGansu University of Chinese MedicineLanzhouPeople's Republic of China
| | - Baixin Bao
- The First School of Clinical MedicineGansu University of Chinese MedicineLanzhouPeople's Republic of China
| | - Chunming Li
- Department of ObstetricsGansu Province People's HospitalLanzhouPeople's Republic of China
| | - Yongning Zhou
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|