1
|
Mishina AI, Bakoev SY, Oorzhak AY, Keskinov AA, Kabieva SS, Korobeinikova AV, Yudin VS, Bobrova MM, Shestakov DA, Makarov VV, Getmantseva LV. Search for signals of positive selection of circadian rhythm genes PER1, PER2, PER3 in different human populations. Vavilovskii Zhurnal Genet Selektsii 2024; 28:640-649. [PMID: 39440312 PMCID: PMC11491481 DOI: 10.18699/vjgb-24-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 10/25/2024] Open
Abstract
The diversity of geographically distributed human populations shows considerable variation in external and internal traits of individuals. Such differences are largely attributed to genetic adaptation to various environmental influences, which include changes in climatic conditions, variations in sleep and wakefulness, dietary variations, and others. Whole-genome data from individuals of different populations make it possible to determine the specific genetic sites responsible for adaptations and to further understand the genetic structure underlying human adaptive characteristics. In this article, we searched for signals of single nucleotide polymorphisms (SNPs) under selection pressure in people of different populations. To identify selection signals in different population groups, the PER1, PER2 and PER3 genes that are involved in the coordination of thermogenic functions and regulation of circadian rhythms, which is directly reflected in the adaptive abilities of the organism, were investigated. Data were analyzed using publicly available data from the 1000 Genomes Project for 23 populations. The Extended Haplotype Homozygosity Score statistical method was chosen to search for traces of selection. The comparative analysis performed identified points subject to selection pressure. The SNPs were annotated through the GWAS catalog and manually by analyzing Internet resources. This study suggests that living conditions, climate, and other external factors directly influence the genetic structure of populations and vary across races and geographic locations. In addition, many of the selection variants in the PER1, PER2, PER3 genes appear to regulate biological processes that are associated with major modern diseases, including obesity, cancer, metabolic syndrome, bipolar personality disorder, depression, rheumatoid arthritis, diabetes mellitus, lupus erythematosus, stroke and Alzheimer's disease, making them extremely interesting targets for further research aimed at identifying the genetic causes of human disease.
Collapse
Affiliation(s)
- A I Mishina
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - S Y Bakoev
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - A Y Oorzhak
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - A A Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Sh Sh Kabieva
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - A V Korobeinikova
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - V S Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - M M Bobrova
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - D A Shestakov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - V V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - L V Getmantseva
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
2
|
Song Y, Sun X, Shen L, Qu Z, Yin J, Wang Z, Zhang H. Genes of cancer-related fatigue: a scoping review. Front Oncol 2024; 14:1446321. [PMID: 39372868 PMCID: PMC11449716 DOI: 10.3389/fonc.2024.1446321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 10/08/2024] Open
Abstract
Background Cancer-related fatigue (CRF) is a prevalent adverse effect experienced by cancer patients while receiving and after treatment, impacting as many as 90% of individuals. Although CRF is common, the genetic processes responsible for it and their influence on individual vulnerability are not well understood and are still being investigated. Objective The primary objective of this scoping review is to identify and assess genes linked to the vulnerability and severity of CRF. This will help us better understand the genetic factors involved and assist in developing targeted nursing treatments in clinical settings. Methods This review followed the PRISMA guidelines. A comprehensive search was performed in databases, such as PubMed, EMBASE, Web of Science, Cochrane Library, SinoMed, CNKI, and VIP, encompassing genetic association studies on CRF published up to February 25, 2024. The JBI Critical Appraisal Tools were used to assess the quality of observational studies. Results This evaluation encompassed a comprehensive analysis of 14 studies that involved 3,254 patients. The results indicate strong connections between CRF and various inflammatory cytokines (IL-4, IL-6, IL-8, IL-10, IL-1β), tumor necrosis factor-alpha (TNF-α), catechol-O-methyltransferase (COMT), and circadian rhythm genes (CLOCK, PER). Conclusion This scoping review emphasizes the significant genetic factor in CRF, with multiple genes showing distinct effects on cancer fatigue symptoms. Identifying these genes enhances our comprehension of CRF and unveils novel avenues for cancer treatment approaches. Future research should prioritize conducting cohort studies to monitor alterations in gene expression pre- and post-treatment, hence improving individualized medicinal strategies in oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongshi Zhang
- College of Nursing, Changchun University of Chinese Medicine,
Changchun, Jilin, China
| |
Collapse
|
3
|
Habudele Z, Chen G, Qian SE, Vaughn MG, Zhang J, Lin H. High Dietary Intake of Iron Might Be Harmful to Atrial Fibrillation and Modified by Genetic Diversity: A Prospective Cohort Study. Nutrients 2024; 16:593. [PMID: 38474722 DOI: 10.3390/nu16050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Some studies suggest an association between iron overload and cardiovascular diseases (CVDs). However, the relationship between dietary iron intake and atrial fibrillation (AF) remains uncertain, as does the role of genetic loci on this association. The study involved 179,565 participants from UK Biobank, tracking incident atrial fibrillation (AF) cases. Iron intake was categorized into low, moderate, and high groups based on dietary surveys conducted from 2009 to 2012. The Cox regression model was used to estimate the risk of AF in relation to iron intake, assessing the hazard ratio (HR) and 95% confidence interval (95% CI). It also examined the impact of 165 AF-related and 20 iron-related genetic variants on this association. Pathway enrichment analyses were performed using Metascape and FUMA. During a median follow-up period of 11.6 years, 6693 (3.97%) incident AF cases were recorded. A total of 35,874 (20.0%) participants had high iron intake. High iron intake was associated with increased risk of AF [HR: 1.13 (95% CI: 1.05, 1.22)] in a fully adjusted model. Importantly, there were 83 SNPs (11 iron-related SNPs) that could enhance the observed associations. These genes are mainly involved in cardiac development and cell signal transduction pathways. High dietary iron intake increases the risk of atrial fibrillation, especially when iron intake exceeds 16.95 mg. The association was particularly significant among the 83 SNPs associated with AF and iron, the individuals with these risk genes. Gene enrichment analysis revealed that these genes are significantly involved in cardiac development and cell signal transduction processes.
Collapse
Affiliation(s)
- Zierdi Habudele
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Samantha E Qian
- College of Arts and Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Michael G Vaughn
- School of Social Work, Saint Louis University, St. Louis, MO 63103, USA
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Yujra VQ, Silveira EJDD, Ribeiro DA, Castilho RM, Squarize CH. Clock gene Per2 modulates epidermal tissue repair in vivo. J Cell Biochem 2024; 125:e30513. [PMID: 38229522 PMCID: PMC10932909 DOI: 10.1002/jcb.30513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Wound healing can be influenced by genes that control the circadian cycle, including Per2 and BMAL1, which coordinate the functions of several organs, including the skin. The aim of the study was to evaluate the role of PER2 during experimental skin wound healing. Two groups (control and Per2-KO), consisting of 14 male mice each, were anesthetized by inhalation, and two 6 mm wounds were created on their dorsal skin using a punch biopsy. A silicone ring was sutured around the wound perimeter to restrict contraction. The wound healing process was clinically measured daily (closure index) until complete wound repair. On Day 6, histomorphometric analysis was performed using the length and thickness of the epithelial migration tongue, in addition to counting vessels underlying the lesion by immunofluorescence assay and maturation of collagen fibers through picrosirius staining. Bromodeoxyuridine (BrdU) incorporation and quantification were performed using the subcutaneous injection technique 2 h before euthanasia and through immunohistochemical analysis of the proliferative index. In addition, the qualitative analysis of myofibroblasts and periostin distribution in connective tissue was performed by immunofluorescence. Statistically significant differences were observed in the healing time between the experimental groups (means: 15.5 days for control mice and 13.5 days for Per2-KO; p = 0.001). The accelerated healing observed in the Per2-KO group (p < 0.05) was accompanied by statistical differences in wound diameter and length of the migrating epithelial tongue (p = 0.01) compared to the control group. Regarding BrdU immunoreactivity, higher expression was observed in the intact epithelium of Per2-KO animals (p = 0.01), and this difference compared to control was also present, to a lesser extent, at the wound site (p = 0.03). Immunofluorescence in the connective tissue underlying the wound showed a higher angiogenic potential in the Per2-KO group in the intact tissue area and the wound region (p < 0.01), where increased expression of myofibroblasts was also observed. Qualitative analysis revealed the distribution of periostin protein and collagen fibers in the connective tissue underlying the wound, with greater organization and maturation during the analyzed period. Our research showed that the absence of the Per2 gene positively impacts the healing time of the skin in vivo. This acceleration depends on the increase of epithelial proliferative and angiogenic capacity of cells carrying the Per2 deletion.
Collapse
Affiliation(s)
- Veronica Quispe Yujra
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
- Department of Biosciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ericka Janine Dantas da Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
- Odontology Sciences Postgraduate Program, Dentistry Department, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Daniel Araki Ribeiro
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
- Department of Biosciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|