1
|
Ming H, Zhang M, Rajput S, Logsdon D, Zhu L, Schoolcraft WB, Krisher R, Jiang Z, Yuan Y. In Vitro Culture Alters Cell Lineage Composition and Cellular Metabolism of Bovine Blastocyst. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544379. [PMID: 37333292 PMCID: PMC10274902 DOI: 10.1101/2023.06.09.544379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Profiling transcriptome at single cell level of bovine blastocysts derived in vivo (IVV), in vitro from conventional culture medium (IVC), and reduced nutrient culture medium (IVR) has enabled us to reveal cell lineage segregation, during which forming inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells. Only IVV embryos had well-defined ICM, indicating in vitro culture may delay the first cell fate commitment to ICM. Differences between IVV, IVC and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis by using the differentially expressed genes of these non-TE cells between groups pointed to highly active metabolic and biosynthetic processes, with reduced cellular signaling and membrane transport in IVC embryos, which may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes, but increased cellular signaling and membrane transport, suggesting these cellular mechanisms may contribute to the improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development when compared to IVV embryos with notably over-active membrane transport activities that led to impaired ion homeostasis.
Collapse
Affiliation(s)
- Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mingxiang Zhang
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Sandeep Rajput
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
- Genus plc, 1525 River Rd, DeForest, WI 53532, USA
| | - Deirdre Logsdon
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Linkai Zhu
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Rebecca Krisher
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
- Genus plc, 1525 River Rd, DeForest, WI 53532, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| |
Collapse
|
2
|
Atcheson RJ, Burne THJ, Dawson PA. Serum sulfate level and Slc13a1 mRNA expression remain unaltered in a mouse model of moderate vitamin D deficiency. Mol Cell Biochem 2022:10.1007/s11010-022-04634-7. [PMID: 36566486 DOI: 10.1007/s11010-022-04634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022]
Abstract
Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.
Collapse
Affiliation(s)
- Ranita J Atcheson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Clarke T, Fernandez FE, Dawson PA. Sulfation Pathways During Neurodevelopment. Front Mol Biosci 2022; 9:866196. [PMID: 35495624 PMCID: PMC9047184 DOI: 10.3389/fmolb.2022.866196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Sulfate is an important nutrient that modulates a diverse range of molecular and cellular functions in mammalian physiology. Over the past 2 decades, animal studies have linked numerous sulfate maintenance genes with neurological phenotypes, including seizures, impaired neurodevelopment, and behavioral abnormalities. Despite sulfation pathways being highly conserved between humans and animals, less than one third of all known sulfate maintenance genes are clinically reportable. In this review, we curated the temporal and spatial expression of 91 sulfate maintenance genes in human fetal brain from 4 to 17 weeks post conception using the online Human Developmental Biology Resource Expression. In addition, we performed a systematic search of PubMed and Embase, identifying those sulfate maintenance genes linked to atypical neurological phenotypes in humans and animals. Those findings, together with a search of the Online Mendelian Inheritance in Man database, identified a total of 18 candidate neurological dysfunction genes that are not yet considered in clinical settings. Collectively, this article provides an overview of sulfate biology genes to inform future investigations of perturbed sulfate homeostasis associated with neurological conditions.
Collapse
Affiliation(s)
- Taylor Clarke
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Banyo, QLD, Australia
| | - Francesca E. Fernandez
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Banyo, QLD, Australia
| | - Paul A. Dawson
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Paul A. Dawson,
| |
Collapse
|
4
|
Lane JDE, Greenwood WJH, Day VW, Jolliffe KA, Bowman-James K, Adriaenssens L. Bis[squaramido]ferrocenes as electrochemical sulfate receptors. NEW J CHEM 2022. [DOI: 10.1039/d2nj03951f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bis[squaramido]ferrocene scaffold is introduced and shown to selectively bind and electrochemically report sulfate in competitive water/DMSO mixtures.
Collapse
Affiliation(s)
- Jakob D. E. Lane
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | | | - Victor W. Day
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Katrina A. Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|