1
|
Yoon JH, Kim S. Learning gene networks under SNP perturbation using SNP and allele-specific expression data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563661. [PMID: 37961468 PMCID: PMC10634764 DOI: 10.1101/2023.10.23.563661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Allele-specific expression quantification from RNA-seq reads provides opportunities to study the control of gene regulatory networks by cis-acting and trans-acting genetic variants. Many existing methods performed a single-gene and single-SNP association analysis to identify expression quantitative trait loci (eQTLs), and placed the eQTLs against known gene networks for functional interpretation. Instead, we view eQTL data as a capture of the effects of perturbation of gene regulatory system by a large number of genetic variants and reconstruct a gene network perturbed by eQTLs. We introduce a statistical framework called CiTruss for simultaneously learning a gene network and cis-acting and trans-acting eQTLs that perturb this network, given population allele-specific expression and SNP data. CiTruss uses a multi-level conditional Gaussian graphical model to model trans-acting eQTLs perturbing the expression of both alleles in gene network at the top level and cis-acting eQTLs perturbing the expression of each allele at the bottom level. We derive a transformation of this model that allows efficient learning for large-scale human data. Our analysis of the GTEx and LG×SM advanced intercross line mouse data for multiple tissue types with CiTruss provides new insights into genetics of gene regulation. CiTruss revealed that gene networks consist of local subnetworks over proximally located genes and global subnetworks over genes scattered across genome, and that several aspects of gene regulation by eQTLs such as the impact of genetic diversity, pleiotropy, tissue-specific gene regulation, and local and long-range linkage disequilibrium among eQTLs can be explained through these local and global subnetworks.
Collapse
Affiliation(s)
- Jun Ho Yoon
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | | |
Collapse
|
2
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Santoro L, Pjetraj D, Velmishi V, Campana C, Catassi C, Dionisi-Vici C, Maiorana A. A new phenotype of aldolase a deficiency in a 14 year-old boy with epilepsy and rhabdomyolysis - case report. Ital J Pediatr 2022; 48:39. [PMID: 35246226 PMCID: PMC8895104 DOI: 10.1186/s13052-022-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Glycogen storage disease type XII is a rare metabolic disease resulting from Aldolase A deficiency that causes muscle glycogen accumulation, with crisis of rhabdomyolysis and hemolytic anemia. In the very few cases described, rhabdomyolysis crises are caused by fever and/or exercise and can accompany acute hemolytic anemia. Although currently there is no therapy available for this disease, the guidelines for the management of other forms of glycogen storage diseases recommend a nutritional therapy in order to avoid hypoglycemia or prevent exercise-induced rhabdomyolysis. Case presentation In this case report we describe a new phenotype of the disease in a 14-year-old boy, characterized by seizures and rhabdomyolysis. Beside an antiepileptic treatment, we propose a new therapeutic approach based on ketogenic diet in order to supply an energetic substrate for skeletal muscle and neurons. Conclusions The anti-epileptic therapy and the dietetic approach were well tolerated by the patient who showed good compliance. This led to a deceleration of the disease with no other acute episodes of seizures and rhabdomyolysis, without any side effects observed.
Collapse
Affiliation(s)
- Lucia Santoro
- Division of Pediatrics, Polytechnic University of Marche, Ospedale Pediatrico "G. Salesi", Ancona, Italy
| | - Dorina Pjetraj
- Division of Pediatrics, Polytechnic University of Marche, Ospedale Pediatrico "G. Salesi", Ancona, Italy.
| | - Virtut Velmishi
- Pediatric Service Nr 2 "Mother Teresa" Hospital-Trina, Tirana, Albania
| | - Carmen Campana
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Catassi
- Division of Pediatrics, Polytechnic University of Marche, Ospedale Pediatrico "G. Salesi", Ancona, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Maiorana
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
4
|
Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. Int J Mol Sci 2022; 23:ijms23020772. [PMID: 35054955 PMCID: PMC8776025 DOI: 10.3390/ijms23020772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The milk yeast Kluyveromyces lactis degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (KlFBA1), and three genes encoding isoforms of the latter (KlTDH1, KlTDH2, KlGDP1). Phenotypic analyses were performed by deleting the genes from the haploid K. lactis genome. While Klfba1 deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the Klfba1 deletion by the human ALDOA gene renders K. lactis a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.
Collapse
|
5
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Implementation of Hospital-Based Supplemental Duchenne Muscular Dystrophy Newborn Screening (sDMDNBS): A Pathway to Broadening Adoption. Int J Neonatal Screen 2021; 7:ijns7040077. [PMID: 34842620 PMCID: PMC8629008 DOI: 10.3390/ijns7040077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is not currently part of mandatory newborn screening, despite the availability of a test since 1975. In the absence of screening, a DMD diagnosis is often not established in patients until 3-6 years of age. During this time, irreversible muscle degeneration takes place, and clinicians agree that the earlier therapy is initiated, the better the long-term outcome. With recent availability of FDA-approved DMD therapies, interest has renewed for adoption by state public health programs, but such implementation is a multiyear process. To speed access to approved therapies, we implemented a unique, hospital-based program offering parents of newborns an optional, supplemental DMD newborn screen (NBS) via a two-tiered approach: utilizing a creatine kinase (CK) enzyme assay coupled with rapid targeted next-generation sequencing (tNGS) for the DMD gene (using a Whole-Exome Sequencing (WES) assay). The tNGS/WES assay integrates the ability to detect both point mutations and large deletion/duplication events. This tiered newborn screening approach allows for the opportunity to improve treatment and outcomes, avoid the diagnostic delays, and diminish healthcare disparities. To implement this screening algorithm through hospitals in a way that would ultimately be acceptable to public health laboratories, we chose an FDA-approved CK-MM immunoassay to avoid the risks of false-negative/-positive results. Because newborn CK values can be affected due to non-DMD-related causes such as birth trauma, a confirmatory repeat CK assay on a later dried blood spot (DBS) collection has been proposed. Difficulties associated with non-routine repeat DBS collection, including the tracking and recall of families, and the potential creation of parental anxiety associated with false-positive results, can be avoided with this algorithm. Whereas a DMD diagnosis is essentially ruled out by the absence of detected DMD sequence abnormalities, a subsequent CK would still be warranted to confirm resolution of the initial elevation, and thus the absence of non-DMD muscular dystrophy or other pathologies. To date, we have screened over 1500 newborns (uptake rate of ~80%) by a CK-MM assay, and reflexed DMD tNGS in 29 of those babies. We expect the experience from this screening effort will serve as a model that will allow further expansion to other hospital systems until a universal public health screening is established.
Collapse
|