1
|
Muffels IJJ, Kozicz T, Perlstein EO, Morava E. The Therapeutic Future for Congenital Disorders of Glycosylation. J Inherit Metab Dis 2025; 48:e70011. [PMID: 40064184 DOI: 10.1002/jimd.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025]
Abstract
The past decade, novel treatment options for congenital disorders of glycosylation (CDG) have advanced rapidly. Innovative therapies, targeting both the root cause, the affected metabolic pathways, and resulting manifestations, have transitioned from the research stage to practical applications. However, with novel therapeutic abilities, novel challenges await, specifically when it concerns the large number of clinical trials that need to be performed in order to treat all 190 genetic defects that cause CDG known to date. The present paper aims to provide an overview of how the CDG field can keep advancing its therapeutic strategies over the coming years with these challenges in mind. We focus on three important pillars that may shape the future of CDG: the use of disease models, clinical trial readiness, and the possibility to make individualized treatments scalable to the entire CDG cohort.
Collapse
Affiliation(s)
- I J J Muffels
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - T Kozicz
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | | | - E Morava
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Biophysics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
2
|
Ahn JH, Yoon JG, Cho J, Lee S, Kim S, Kim MJ, Kim SY, Lee ST, Chu K, Lee SK, Kim HJ, Youn J, Jang JH, Chae JH, Moon J, Cho JW. Implementing genomic medicine in clinical practice for adults with undiagnosed rare diseases. NPJ Genom Med 2024; 9:63. [PMID: 39609445 PMCID: PMC11604660 DOI: 10.1038/s41525-024-00449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
The global burden of undiagnosed diseases, particularly in adults, is rising due to their significant socioeconomic impact. To address this, we enrolled 232 adult probands with undiagnosed conditions, utilizing bioinformatics tools for genetic analysis. Alongside exome and genome sequencing, repeat-primed PCR and Cas9-mediated nanopore sequencing were applied to suspected short tandem repeat disorders. Probands were classified into probable genetic (n = 128) or uncertain (n = 104) origins. The study found genetic causes in 66 individuals (28.4%) and non-genetic causes in 12 (5.2%), with a longer diagnostic journey for those in the probable genetic group or with pediatric symptom onset, emphasizing the need for increased efforts in these populations. Genetic diagnoses facilitated effective surveillance, cascade screening, drug repurposing, and pregnancy planning. This study demonstrates that integrating sequencing technologies improves diagnostic accuracy, may shorten the time to diagnosis, and enhances personalized management for adults with undiagnosed diseases.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Williams LJ, Waller S, Qiu J, Innes E, Elserafy N, Procopis P, Sampaio H, Mahant N, Tchan MC, Mohammad SS, Morales‐Briceño H, Fung VS. DHDDS and NUS1: A Converging Pathway and Common Phenotype. Mov Disord Clin Pract 2024; 11:76-85. [PMID: 38291835 PMCID: PMC10828623 DOI: 10.1002/mdc3.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Variants in dehydrodolichol diphosphate synthetase (DHDDS) and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1) cause a neurodevelopmental disorder, classically with prominent epilepsy. Recent reports suggest a complex movement disorder and an overlapping phenotype has been postulated due to their combined role in dolichol synthesis. CASES We describe three patients with heterozygous variants in DHDDS and five with variants affecting NUS1. They bear a remarkably similar phenotype of a movement disorder dominated by multifocal myoclonus. Diagnostic clues include myoclonus exacerbated by action and facial involvement, and slowly progressive or stable, gait ataxia with disproportionately impaired tandem gait. Myoclonus is confirmed with neurophysiology, including EMG of facial muscles. LITERATURE REVIEW Ninety-eight reports of heterozygous variants in DHDDS, NUS1 and chromosome 6q22.1 structural alterations spanning NUS1, confirm the convergent phenotype of hypotonia at birth, developmental delay, multifocal myoclonus, ataxia, dystonia and later parkinsonism with or without generalized epilepsy. Other features include periodic exacerbations, stereotypies, anxiety, and dysmorphisms. Although their gene products contribute to dolichol biosynthesis, a key step in N-glycosylation, transferrin isoform profiles are typically normal. Imaging is normal or non-specific. CONCLUSIONS Recognition of their shared phenotype may expedite diagnosis through chromosomal microarray and by including DHDDS/NUS1 in movement disorder gene panels.
Collapse
Affiliation(s)
- Laura J. Williams
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Sophie Waller
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Jessica Qiu
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Emily Innes
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- School of Medicine SydneyThe University of Notre DameSydneyNew South WalesAustralia
| | - Noha Elserafy
- Department of Genomic MedicineWestmead HospitalWestmeadNew South WalesAustralia
| | - Peter Procopis
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Hugo Sampaio
- Department of NeurologySydney Children's HospitalRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Neil Mahant
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Michel C. Tchan
- Department of Genomic MedicineWestmead HospitalWestmeadNew South WalesAustralia
- Specialty of Genomic Medicine, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Shekeeb S. Mohammad
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Kids Neuroscience CentreThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Sydney Medical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Hugo Morales‐Briceño
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Victor S.C. Fung
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Medical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Jia JX, Peng SL, Kalisa NY, Chao Q, Zhou Z, Gao XD, Wang N. A liposomal carbohydrate vaccine, adjuvanted with an NKT cell agonist, induces rapid and enhanced immune responses and antibody class switching. J Nanobiotechnology 2023; 21:175. [PMID: 37264420 DOI: 10.1186/s12951-023-01927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDGs) are genetic diseases caused by gene defects in glycan biosynthesis pathways, and there is an increasing number of patients diagnosed with CDGs. Because CDGs show many different clinical symptoms, their accurate clinical diagnosis is challenging. Recently, we have shown that liposome nanoparticles bearing the ALG1-CDG and PMM2-CDG biomarkers (a tetrasaccharide: Neu5Ac-α2,6-Gal-β1,4-GlcNAc-β1,4-GlcNAc) stimulate a moderate immune response, while the generated antibodies show relatively weak affinity maturation. Thus, mature antibodies with class switching to IgG are desired to develop high-affinity antibodies that may be applied in medical applications. RESULTS In the present study, a liposome-based vaccine platform carrying a chemoenzymatic synthesized phytanyl-linked tetrasaccharide biomarker was optimized. The liposome nanoparticles were constructed by dioleoylphosphatidylcholine (DOPC) to improve the stability and immunogenicity of the vaccine, and adjuvanted with the NKT cell agonist PBS57 to generate high level of IgG antibodies. The results indicated that the reformulated liposomal vaccine stimulated a stronger immune response, and PBS57 successfully induce an antibody class switch to IgG. Further analyses of IgG antibodies elicited by liposome vaccines suggested their specific binding to tetrasaccharide biomarkers, which were mainly IgG2b isotypes. CONCLUSIONS Immunization with a liposome vaccine carrying a carbohydrate antigen and PBS57 stimulates high titers of CDG biomarker-specific IgG antibodies, thereby showing great potential as a platform to develop rapid diagnostic methods for ALG1-CDG and PMM2-CDG.
Collapse
Affiliation(s)
- Ji-Xiang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Sen-Lin Peng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ndayambaje Yvan Kalisa
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiang Chao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|