1
|
Chesters D, Ferrari RR, Lin X, Orr MC, Staab M, Zhu CD. Launching insectphylo.org; a new hub facilitating construction and use of synthesis molecular phylogenies of insects. Mol Ecol Resour 2023; 23:1556-1573. [PMID: 37265018 DOI: 10.1111/1755-0998.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
The Holy Grail of an Insect Tree of Life can only be 'discovered' through extensive collaboration among taxon specialists, phylogeneticists and centralized frameworks such as Open Tree of Life, but insufficient effort from stakeholders has so far hampered this promising approach. The resultant unavailability of synthesis phylogenies is an unfortunate situation given the numerous practical usages of phylogenies in the near term and against the backdrop of the ongoing biodiversity crisis. To resolve this issue, we establish a new online hub that centralizes the collation of relevant phylogenetic data and provides the resultant synthesis molecular phylogenies. This is achieved through key developments in a proposed pipeline for the construction of a species-level insect phylogeny. The functionality of the framework is demonstrated through the construction of a highly supported, species-comprehensive phylogeny of Diptera, built from integrated omics data, COI DNA barcodes, and a compiled database of over 100 standardized, published Diptera phylogenies. Machine-readable forms of the phylogeny (and subsets thereof) are publicly available at insectphylo.org, a new public repository for species-comprehensive phylogenies for biological research.
Collapse
Affiliation(s)
- Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Rafael R Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Michael Staab
- Ecological Networks, Technische Universität Darmstadt, Darmstadt, Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Winkler IS, Kirk-Spriggs AH, Bayless KM, Soghigian J, Meier R, Pape T, Yeates DK, Carvalho AB, Copeland RS, Wiegmann BM. Phylogenetic resolution of the fly superfamily Ephydroidea-Molecular systematics of the enigmatic and diverse relatives of Drosophilidae. PLoS One 2022; 17:e0274292. [PMID: 36197946 PMCID: PMC9534441 DOI: 10.1371/journal.pone.0274292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Abstract
The schizophoran superfamily Ephydroidea (Diptera: Cyclorrhapha) includes eight families, ranging from the well-known vinegar flies (Drosophilidae) and shore flies (Ephydridae), to several small, relatively unusual groups, the phylogenetic placement of which has been particularly challenging for systematists. An extraordinary diversity in life histories, feeding habits and morphology are a hallmark of fly biology, and the Ephydroidea are no exception. Extreme specialization can lead to "orphaned" taxa with no clear evidence for their phylogenetic position. To resolve relationships among a diverse sample of Ephydroidea, including the highly modified flies in the families Braulidae and Mormotomyiidae, we conducted phylogenomic sampling. Using exon capture from Anchored Hybrid Enrichment and transcriptomics to obtain 320 orthologous nuclear genes sampled for 32 species of Ephydroidea and 11 outgroups, we evaluate a new phylogenetic hypothesis for representatives of the superfamily. These data strongly support monophyly of Ephydroidea with Ephydridae as an early branching radiation and the placement of Mormotomyiidae as a family-level lineage sister to all remaining families. We confirm placement of Cryptochetidae as sister taxon to a large clade containing both Drosophilidae and Braulidae-the latter a family of honeybee ectoparasites. Our results reaffirm that sampling of both taxa and characters is critical in hyperdiverse clades and that these factors have a major influence on phylogenomic reconstruction of the history of the schizophoran fly radiation.
Collapse
Affiliation(s)
- Isaac S. Winkler
- Department of Biology, Cornell College, Mount Vernon, Iowa, United States of America
| | | | - Keith M. Bayless
- Australian National Insect Collection, CSIRO National Research Collection, Australia (NRCA), Acton, Canberra, ACT, Australia
| | - John Soghigian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thomas Pape
- Natural History Museum of Denmark, Copenhagen, Denmark
| | - David K. Yeates
- Australian National Insect Collection, CSIRO National Research Collection, Australia (NRCA), Acton, Canberra, ACT, Australia
| | - A. Bernardo Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert S. Copeland
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Brian M. Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Li X, Teasdale LC, Bayless KM, Ellis AG, Wiegmann BM, Lamas CJE, Lambkin CL, Evenhuis NL, Nicholls JA, Hartley D, Shin S, Trautwein M, Zwick A, Lessard BD, Yeates DK. Phylogenomics reveals accelerated late Cretaceous diversification of bee flies (Diptera: Bombyliidae). Cladistics 2021; 37:276-297. [PMID: 34478201 DOI: 10.1111/cla.12436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Bombyliidae is a very species-rich and widespread family of parasitoid flies with more than 250 genera classified into 17 extant subfamilies. However, little is known about their evolutionary history or how their present-day diversity was shaped. Transcriptomes of 15 species and anchored hybrid enrichment (AHE) sequence captures of 86 species, representing 94 bee fly species and 14 subfamilies, were used to reconstruct the phylogeny of Bombyliidae. We integrated data from transcriptomes across each of the main lineages in our AHE tree to build a data set with more genes (550 loci versus 216 loci) and higher support levels. Our overall results show strong congruence with the current classification of the family, with 11 out of 14 included subfamilies recovered as monophyletic. Heterotropinae and Mythicomyiinae are successive sister groups to the remainder of the family. We examined the evolution of key morphological characters through our phylogenetic hypotheses and show that neither the "sand chamber subfamilies" nor the "Tomophthalmae" are monophyletic in our phylogenomic analyses. Based on our results, we reinstate two tribes at the subfamily level (Phthiriinae stat. rev. and Ecliminae stat. rev.) and we include the genus Sericosoma Macquart (previously incertae sedis) in the subfamily Oniromyiinae, bringing the total number of bee fly subfamilies to 19. Our dating analyses indicate a Jurassic origin of the family (165-194 Ma), with the sand chamber evolving early in bee fly evolution, in the late Jurassic or mid-Cretaceous (100-165 Ma). We hypothesize that the angiosperm radiation and the hothouse climate established during the late Cretaceous accelerated the diversification of bee flies, by providing an expanded range of resources for the parasitoid larvae and nectarivorous adults.
Collapse
Affiliation(s)
- Xuankun Li
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia.,Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Luisa C Teasdale
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Keith M Bayless
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Allan G Ellis
- Botany and Zoology Department, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carlos José E Lamas
- Museu de Zoologia da Universidade de São Paulo. Avenida Nazaré, 481 Ipiranga 04263-000, São Paulo, SP, Brazil
| | | | - Neal L Evenhuis
- J. Linsley Gressitt Center for Research in Entomology, Bishop Museum, 1525 Bernice Street, Honolulu, HI, 96817, USA
| | - James A Nicholls
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Diana Hartley
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.,School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Bryan D Lessard
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - David K Yeates
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Savage J, Borkent A, Brodo F, Cumming JM, Gregory Curler, Currie DC, deWaard JR, Gibson JF, Hauser M, Laplante L, Lonsdale O, Marshall SA, O’Hara JE, Sinclair BJ, Skevington JH. Diptera of Canada. Zookeys 2019; 819:397-450. [PMID: 30713456 PMCID: PMC6355757 DOI: 10.3897/zookeys.819.27625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/27/2018] [Indexed: 01/26/2023] Open
Abstract
The Canadian Diptera fauna is updated. Numbers of species currently known from Canada, total Barcode Index Numbers (BINs), and estimated numbers of undescribed or unrecorded species are provided for each family. An overview of recent changes in the systematics and Canadian faunistics of major groups is provided as well as some general information on biology and life history. A total of 116 families and 9620 described species of Canadian Diptera are reported, representing more than a 36% increase in species numbers since the last comparable assessment by JF McAlpine et al. (1979). Almost 30,000 BINs have so far been obtained from flies in Canada. Estimates of additional number of species remaining to be documented in the country range from 5200 to 20,400.
Collapse
Affiliation(s)
- Jade Savage
- Bishop’s University, Sherbrooke, Quebec, CanadaBishop's UniversitySherbrookeCanada
| | - Art Borkent
- Royal British Columbia Museum, Victoria, British Columbia, CanadaCanadian Museum of NatureOttawaCanada
| | - Fenja Brodo
- Canadian Museum of Nature, Ottawa, Ontario, CanadaCanadian Food Inspection AgencyOttawaCanada
| | - Jeffrey M. Cumming
- Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, CanadaRoyal British Columbia MuseumSalmon ArmCanada
| | - Gregory Curler
- Mississippi Entomological Museum, Mississippi State University, Starksville, Mississippi, USAAgriculture and Agri-Food CanadaOttawaCanada
| | - Douglas C. Currie
- Royal Ontario Museum, Toronto, Ontario, CanadaMississippi State UniversityStarksvilleUnited States of America
| | - Jeremy R. deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, CanadaRoyal Ontario MuseumTorontoCanada
| | - Joel F. Gibson
- Royal British Columbia Museum, Victoria, British Columbia, CanadaCanadian Museum of NatureOttawaCanada
| | - Martin Hauser
- California Department of Food and Agriculture, Sacramento, California, USAUniversity of GuelphGuelphCanada
| | - Louis Laplante
- Unaffiliated, Montreal, Quebec, CanadaRoyal British Columbia MuseumVictoriaCanada
| | - Owen Lonsdale
- Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, CanadaRoyal British Columbia MuseumSalmon ArmCanada
| | - Stephen A. Marshall
- University of Guelph, Guelph, Ontario, CanadaCalifornia Department of Food and AgricultureSacramentoUnited States of America
| | - James E. O’Hara
- Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, CanadaRoyal British Columbia MuseumSalmon ArmCanada
| | - Bradley J. Sinclair
- Canadian Food Inspection Agency, Ottawa, Ontario, CanadaUnaffiliatedMontrealCanada
| | - Jeffrey H. Skevington
- Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, CanadaRoyal British Columbia MuseumSalmon ArmCanada
| |
Collapse
|
6
|
Dikow RB, Frandsen PB, Turcatel M, Dikow T. Genomic and transcriptomic resources for assassin flies including the complete genome sequence of Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes. PeerJ 2017; 5:e2951. [PMID: 28168115 PMCID: PMC5289110 DOI: 10.7717/peerj.2951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
A high-quality draft genome for Proctacanthus coquilletti (Insecta: Diptera: Asilidae) is presented along with transcriptomes for 16 Diptera species from five families: Asilidae, Apioceridae, Bombyliidae, Mydidae, and Tabanidae. Genome sequencing reveals that P. coquilletti has a genome size of approximately 210 Mbp and remarkably low heterozygosity (0.47%) and few repeats (15%). These characteristics helped produce a highly contiguous (N50 = 862 kbp) assembly, particularly given that only a single 2 × 250 bp PCR-free Illumina library was sequenced. A phylogenomic hypothesis is presented based on thousands of putative orthologs across the 16 transcriptomes. Phylogenetic relationships support the sister group relationship of Apioceridae + Mydidae to Asilidae. A time-calibrated phylogeny is also presented, with seven fossil calibration points, which suggests an older age of the split among Apioceridae, Asilidae, and Mydidae (158 mya) and Apioceridae and Mydidae (135 mya) than proposed in the AToL FlyTree project. Future studies will be able to take advantage of the resources presented here in order to produce large scale phylogenomic and evolutionary studies of assassin fly phylogeny, life histories, or venom. The bioinformatics tools and workflow presented here will be useful to others wishing to generate de novo genomic resources in species-rich taxa without a closely-related reference genome.
Collapse
Affiliation(s)
- Rebecca B. Dikow
- Office of Research Information Services, Office of the Chief Information Officer, Smithsonian Institution, Washington, D.C., United States of America
| | - Paul B. Frandsen
- Office of Research Information Services, Office of the Chief Information Officer, Smithsonian Institution, Washington, D.C., United States of America
| | - Mauren Turcatel
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Torsten Dikow
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| |
Collapse
|
7
|
Grimaldi DA. Diverse Orthorrhaphan Flies (Insecta: Diptera: Brachycera) in Amber From the Cretaceous of Myanmar: Brachycera in Cretaceous Amber, Part VII. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2016. [DOI: 10.1206/0003-0090-408.1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Grimaldi DA, Arillo A, Cumming JM, Hauser M. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa. Zookeys 2011; 148:293-332. [PMID: 22287902 PMCID: PMC3264415 DOI: 10.3897/zookeys.148.1809] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022] Open
Abstract
Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. etsp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa significantly expand the Mesozoic fossil record of rare and phylogenetically significant taxa of lower Brachycera.
Collapse
Affiliation(s)
- David A. Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, 10024, USA
| | - Antonio Arillo
- Departamento de Zoología y Antropología Física (Entomología), Facultad de Biología, Universidad Complutense, E-28040, Madrid, Spain
| | - Jeffrey M. Cumming
- Canadian National Collection of Insects, Arachnids, and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Ave., Ottawa Canada K1A OC6
| | - Martin Hauser
- California Department of Food and Agriculture, Plant Pest Diagnostics Branch, 3294 Meadowview Rd., Sacramento, California 95832–1448 USA
| |
Collapse
|
9
|
Winterton SL, Gharali B. Iranotrichia gen. n., a new genus of Scenopinidae (Diptera) from Iran, with a key to window fly genera of the world. Zookeys 2011; 138:75-92. [PMID: 22144855 PMCID: PMC3208522 DOI: 10.3897/zookeys.138.1821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/19/2011] [Indexed: 11/12/2022] Open
Abstract
An unusual new genus of Scenopinidae, Iranotrichia gen. n., comprising two newly discovered species (Iranotrichia insolitasp. n. and Iranotrichia nigrasp. n.), is described from Iran. Iranotrichiagen. n. are scenopinine window flies with a habitus reminiscent of certain bee fly genera (Bombyliidae), based on colouration and elongate mouthparts and antennae. The phylogenetic placement of this distinctive new genus is discussed and a dichotomous key to world genera is presented. The genus name Kelseyananom. n. is proposed to replace Caenoneura Kröber, 1924, which was found to be preoccupied by Thomson (1870: 270) (Hymenoptera) and Kirby (1890: 136) (Odonata).
Collapse
Affiliation(s)
- Shaun L. Winterton
- California State Collection of Arthropods, Plant Pest Diagnostics Center, California Department of Food & Agriculture, Sacramento, California, USA
| | - Babak Gharali
- Department of Entomology, Ghazvin Research Center for Agriculture and Natural Resources, Ghazvin, IRAN
| |
Collapse
|
10
|
Trautwein MD, Wiegmann BM, Yeates DK. Overcoming the effects of rogue taxa: Evolutionary relationships of the bee flies. PLOS CURRENTS 2011; 3:RRN1233. [PMID: 21686308 PMCID: PMC3088465 DOI: 10.1371/currents.rrn1233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/05/2011] [Indexed: 11/18/2022]
Abstract
Bombyliidae (5000 sp.), or bee flies, are a lower brachyceran family of flower-visiting flies that, as larvae, act as parasitoids of other insects. The evolutionary relationships are known from a morphological analysis that yielded minimal support for higher-level groupings. We use the protein-coding gene CAD and 28S rDNA to determine phylogeny and to test the monophyly of existing subfamilies, the divisions Tomophtalmae, and 'the sand chamber subfamilies'. Additionally, we demonstrate that consensus networks can be used to identify rogue taxa in a Bayesian framework. Pruning rogue taxa post-analysis from the final tree distribution results in increased posterior probabilities. We find 8 subfamilies to be monophyletic and the subfamilies Heterotropinae and Mythicomyiinae to be the earliest diverging lineages. The large subfamily Bombyliinae is found to be polyphyletic and our data does not provide evidence for the monophyly of Tomophthalmae or the 'sand chamber subfamilies'.
Collapse
Affiliation(s)
- Michelle D Trautwein
- Department of Entomology, North Carolina State University, Raleigh NC 27695 and CSIRO Ecosystem Sciences, Australian National Insect Collection, PO Box 1700 Canberra ACT 2601
| | | | | |
Collapse
|
11
|
Abstract
Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation--lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)--and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y.
Collapse
|