1
|
Li C, Cong C, Liu F, Yu Q, Zhan Y, Zhu L, Li Y. Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. Int J Mol Sci 2023; 24:ijms24076574. [PMID: 37047545 PMCID: PMC10095026 DOI: 10.3390/ijms24076574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Helitrons, a novel type of mysterious DNA transposons discovered computationally prior to bench work confirmation, are components ubiquitous in most sequenced genomes of various eukaryotes, including plants, animals, and fungi. There is a paucity of empirical evidence to elucidate the mechanism of Helitrons transposition in plants. Here, by constructing several artificial defective Helitron (dHel) reporter systems, we aim to identify the autonomous Helitrons (aHel) in maize genetically and to demonstrate the transposition and repair mechanisms of Helitrons upon the dHel-GFP excision in maize. When crossing with various inbred lines, several transgenic lines produced progeny of segregated, purple-blotched kernels, resulting from a leaky expression of the C1 gene driven by the dHel-interrupted promoter. Transcription analysis indicated that the insertion of different dHels into the C1 promoter or exon would lead to multiple distinct mRNA transcripts corresponding to transgenes in the host genome. Simple excision products and circular intermediates of dHel-GFP transposition have been detected from the leaf tissue of the seedlings in F1 hybrids of transgenic lines with corresponding c1 tester, although they failed to be detected in all primary transgenic lines. These results revealed the transposition and repair mechanism of Helitrons in maize. It is strongly suggested that this reporter system can detect the genetic activity of autonomic Helitron at the molecular level. Sequence features of dHel itself, together with the flanking regions, impact the excision activity of dHel and the regulation of the dHel on the transcription level of the host gene.
Collapse
Affiliation(s)
- Chuxi Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunsheng Cong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyuan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Ametrano A, Picchietti S, Guerra L, Giacomelli S, Oreste U, Coscia MR. Comparative Analysis of the pIgR Gene from the Antarctic Teleost Trematomus bernacchii Reveals Distinctive Features of Cold-Adapted Notothenioidei. Int J Mol Sci 2022; 23:7783. [PMID: 35887127 PMCID: PMC9321927 DOI: 10.3390/ijms23147783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The IgM and IgT classes were previously identified and characterized in the Antarctic teleost Trematomus bernacchii, a species belonging to the Perciform suborder Notothenoidei. Herein, we characterized the gene encoding the polymeric immunoglobulin receptor (pIgR) in the same species and compared it to the pIgR of multiple teleost species belonging to five perciform suborders, including 11 Antarctic and 1 non-Antarctic (Cottoperca gobio) notothenioid species, the latter living in the less-cold peri-Antarctic sea. Antarctic pIgR genes displayed particularly long introns marked by sites of transposable elements and transcription factors. Furthermore, analysis of T. bernacchii pIgR cDNA unveiled multiple amino acid substitutions unique to the Antarctic species, all introducing adaptive features, including N-glycosylation sequons. Interestingly, C. gobio shared most features with the other perciforms rather than with the cold-adapted relatives. T. bernacchii pIgR transcripts were predominantly expressed in mucosal tissues, as indicated by q-PCR and in situ hybridization analysis. These results suggest that in cold-adapted species, pIgR preserved its fundamental role in mucosal immune defense, although remarkable gene structure modifications occurred.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (S.P.); (L.G.)
| | - Laura Guerra
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (S.P.); (L.G.)
| | - Stefano Giacomelli
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| |
Collapse
|
3
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
4
|
Chen J, Wu C, Zhang B, Cai Z, Wei L, Li Z, Li G, Guo T, Li Y, Guo W, Wang X. PiggyBac Transposon-Mediated Transgenesis in the Pacific Oyster ( Crassostrea gigas) - First Time in Mollusks. Front Physiol 2018; 9:811. [PMID: 30061837 PMCID: PMC6054966 DOI: 10.3389/fphys.2018.00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
As an effective method of transgenesis, the plasmid of PiggyBac transposon containing GFP (PiggyBac) transposon system has been widely used in various organisms but not yet in mollusks. In this work, piggyBac containing green fluorescent protein (GFP) was transferred into the Pacific oyster (Crassostrea gigas) by sperm-mediated gene transfer with or without electroporation. Fluorescent larvae were then observed and isolated under an inverted fluorescence microscope, and insertion of piggyBac was tested by polymerase chain reaction (PCR) using genomic DNA as template. Oyster larvae with green fluorescence were observed after transgenesis with or without electroporation, but electroporation increased the efficiency of sperm-mediated transgenesis. Subsequently, the recombinant piggyBac plasmid containing gGH (piggyBac-gGH) containing GFP and a growth hormone gene from orange-spotted grouper (gGH) was transferred into oysters using sperm mediation with electroporation, and fluorescent larvae were observed and isolated. The insertion of piggyBac-gGH was tested by PCR and genome walking analysis. PCR analysis indicated that piggyBac-gGH was transferred into oyster larvae; genome walking analysis further showed the detailed location where piggyBac-gGH was inserted in the oyster genome. This is the first time that piggyBac transposon-mediated transgenesis has been applied in mollusks.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Changlu Wu
- School of Agriculture, Ludong University, Yantai, China
| | - Baolu Zhang
- Consultation Center, State Oceanic Administration, Beijing, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Zhuang Li
- School of Agriculture, Ludong University, Yantai, China
| | - Guangbin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Guo
- School of Agriculture, Ludong University, Yantai, China
| | - Yongchuan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
5
|
Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, Detrich WH, Ozouf-Costaz C, Higuet D. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics 2018; 19:339. [PMID: 29739320 PMCID: PMC5941688 DOI: 10.1186/s12864-018-4714-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4714-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France. .,Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France.
| | - P Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - L Belkadi
- Institut Pasteur, Laboratoire Signalisation et Pathogénèse, UMR CNRS 3691, Bâtiment DARRE, 25-28 rue du Dr Roux, 75015, Paris, France
| | - L Petit
- Plateforme d'Imagerie et Cytométrie en flux, Sorbonne Université, CNRS, - Institut de Biologie Paris-Seine (BDPS - IBPS), F-75005, Paris, France
| | - E Bonnivard
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - A Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France
| | - W H Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - C Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - D Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| |
Collapse
|
6
|
Scarpato M, Angelini C, Cocca E, Pallotta MM, Morescalchi MA, Capriglione T. Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish? Chromosome Res 2016; 23:533-44. [PMID: 26363800 DOI: 10.1007/s10577-015-9484-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
Collapse
Affiliation(s)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", CNR, via P. Castellino, 80131, Napoli, Italy
| | - Ennio Cocca
- IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
| | - Maria M Pallotta
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Maria A Morescalchi
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy.
| |
Collapse
|
7
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
8
|
Roffler S, Menardo F, Wicker T. The making of a genomic parasite - the Mothra family sheds light on the evolution of Helitrons in plants. Mob DNA 2015; 6:23. [PMID: 26688693 PMCID: PMC4683698 DOI: 10.1186/s13100-015-0054-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Background Helitrons are Class II transposons which are highly abundant in almost all eukaryotes. However, most Helitrons lack protein coding sequence. These non-autonomous elements are thought to hijack recombinase/helicase (RepHel) and possibly further enzymes from related, autonomous elements. Interestingly, many plant Helitrons contain an additional gene encoding a single-strand binding protein homologous to Replication Factor A (RPA), a highly conserved, single-copy gene found in all eukaryotes. Results Here, we describe the analysis of DHH_Mothra, a high-copy non-autonomous Helitron in the genome of rice (Oryza sativa). Mothra has a low GC-content and consists of two distinct blocs of tandem repeats. Based on homology between their termini, we identified a putative mother element which encodes an RPA-like protein but has no RepHel gene. Additionally, we found a putative autonomous sister-family with strong homology to the Mothra mother element in the RPA protein and terminal sequences, which we propose provides the RepHel domain for the Mothra family. Furthermore, we phylogenetically analyzed the evolutionary history of RPA-like proteins. Interestingly, plant Helitron RPAs (PHRPAs) are only found in monocotyledonous and dicotyledonous plants and they form a monophyletic group which branched off before the eukaryotic “core” RPAs. Conclusions Our data show how erosion of autonomous Helitrons can lead to different “levels” of autonomy within Helitron families and can create highly successful subfamilies of non-autonomous elements. Most importantly, our phylogenetic analysis showed that the PHRPA gene was most likely acquired via horizontal gene transfer from an unknown eukaryotic donor at least 145–300 million years ago in the common ancestor of monocotyledonous and dicotyledonous plants. This might have led to the evolution of a separate branch of the Helitron superfamily in plants. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Roffler
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| | - Fabrizio Menardo
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| |
Collapse
|
9
|
Cocca E, Petraccioli A, Morescalchi MA, Odierna G, Capriglione T. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodracohamatus (Notothenioidei, Channichthyidae). COMPARATIVE CYTOGENETICS 2015; 9:1-15. [PMID: 25893071 PMCID: PMC4387377 DOI: 10.3897/compcytogen.v9i1.8731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 05/16/2023]
Abstract
Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodracohamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodracohamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodracohamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action.
Collapse
Affiliation(s)
- Ennio Cocca
- Istituto di Bioscienze e Biorisorse, CNR, via P. Castellino 111, 80131 Napoli, Italy
| | - Agnese Petraccioli
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | | | - Gaetano Odierna
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
10
|
Helinoto, a Helitron2 transposon from the icefish Chionodraco hamatus, contains a region with three deubiquitinase-like domains that exhibit transcriptional activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:49-58. [PMID: 25178533 DOI: 10.1016/j.cbd.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022]
Abstract
Transposable elements have accompanied the evolution of the eukaryotic genome for millions of years. The recently discovered Helitron order (class II, subclass 2 single-strand DNA transposons) is common in eukaryotes and seems to play a highly active role in genome reshuffling. This study provides novel insights into the characteristics of Helinoto, a helitron isolated in the genome of the Antarctic fish Chionodraco hamatus. In particular, investigation of the structure of its 5' and 3' ends, which are involved in the transposition process, enabled identification of the characteristic motifs of the Helitron2 group. Moreover, identification of a deubiquitinating protease domain in the region upstream two consecutive OTU domains extended and strengthened the "deubiquitinase" character of the N-terminal portion of Helinoto. Finally, Helinoto transcriptional activity was detected in several C. hamatus tissues. Taken together, these data are particularly intriguing because they document high transcription levels for genes involved in ubiquitination, which ensures protein homeostasis in the extreme Antarctic environment.
Collapse
|
11
|
Thomas J, Vadnagara K, Pritham EJ. DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mob DNA 2014; 5:18. [PMID: 24959209 PMCID: PMC4067079 DOI: 10.1186/1759-8753-5-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 11/11/2022] Open
Abstract
Background The Drosophila INterspersed Elements-1 (DINE-1/INE1) transposable elements (TEs) are the most abundant component of the Drosophila melanogaster genome and have been associated with functional gene duplications. DINE-1 TEs do not encode any proteins (non-autonomous) thus are moved by autonomous partners. The identity of the autonomous partners has been a mystery. They have been allied to Helitrons (rolling-circle transposons), MITEs (DNA transposons), and non-LTR retrotransposons by different authors. Results We report multiple lines of bioinformatic evidence that illustrate the relationship of DINE-1 like TEs to endonuclease-encoding rolling-circle TEs (Helentrons). The structural features of Helentrons are described, which resemble the organization of the non-autonomous partners, but differ significantly from canonical Helitrons. In addition to the presence of an endonuclease domain fused to the Rep/Helicase protein, Helentrons have distinct structural features. Evidence is presented that illustrates that Helentrons are widely distributed in invertebrate, fish, and fungal genomes. We describe an intermediate family from the Phytophthora infestans genome that phylogenetically groups with Helentrons but that displays Helitron structure. In addition, evidence is presented that Helentrons can capture gene fragments in a pattern reminiscent of canonical Helitrons. Conclusions We illustrate the relationship of DINE-1 and related TE families to autonomous partners, the Helentrons. These findings will allow their proper classification and enable a more accurate understanding of the contribution of rolling-circle transposition to the birth of new genes, gene networks, and genome composition.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Komal Vadnagara
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
New insights into helitron transposable elements in the mesopolyploid species Brassica rapa. Gene 2013; 532:236-45. [DOI: 10.1016/j.gene.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022]
|
13
|
|
14
|
Expansion and evolution of the X-linked testis specific multigene families in the melanogaster species subgroup. PLoS One 2012; 7:e37738. [PMID: 22649555 PMCID: PMC3359341 DOI: 10.1371/journal.pone.0037738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
The testis specific X-linked genes whose evolution is traced here in the melanogaster species subgroup are thought to undergo fast rate of diversification. The CK2ßtes and NACβtes gene families encode the diverged regulatory β-subunits of protein kinase CK2 and the homologs of β-subunit of nascent peptide associated complex, respectively. We annotated the CK2βtes-like genes related to CK2ßtes family in the D. simulans and D. sechellia genomes. The ancestor CK2βtes-like genes preserved in D. simulans and D. sechellia are considered to be intermediates in the emergence of the D. melanogaster specific Stellate genes related to the CK2ßtes family. The CK2ßtes-like genes are more similar to the unique autosomal CK2ßtes gene than to Stellates, taking into account their peculiarities of polymorphism. The formation of a variant the CK2ßtes gene Stellate in D. melanogaster as a result of illegitimate recombination between a NACßtes promoter and a distinct polymorphic variant of CK2ßtes-like ancestor copy was traced. We found a close nonrandom proximity between the dispersed defective copies of DINE-1 transposons, the members of Helitron family, and the CK2βtes and NACβtes genes, suggesting an involvement of DINE-1 elements in duplication and amplification of these genes.
Collapse
|