1
|
Li J, Wingfield MJ, Barnes I, Chen S. Calonectria in the age of genes and genomes: Towards understanding an important but relatively unknown group of pathogens. MOLECULAR PLANT PATHOLOGY 2022; 23:1060-1072. [PMID: 35338559 PMCID: PMC9190971 DOI: 10.1111/mpp.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The genus Calonectria includes many aggressive plant pathogens causing diseases on various agricultural crops as well as forestry and ornamental tree species. Some species have been accidentally introduced into new environments via international trade of putatively asymptomatic plant germplasm or contaminated soil, resulting in significant economic losses. This review provides an overview of the taxonomy, population biology, and pathology of Calonectria species, specifically emerging from contemporary studies that have relied on DNA-based technologies. The growing importance of genomics in future research is highlighted. A life cycle is proposed for Calonectria species, aimed at improving our ability to manage diseases caused by these pathogens.
Collapse
Affiliation(s)
- JieQiong Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - ShuaiFei Chen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| |
Collapse
|
2
|
Crous PW, Rossman AY, Aime MC, Allen WC, Burgess T, Groenewald JZ, Castlebury LA. Names of Phytopathogenic Fungi: A Practical Guide. PHYTOPATHOLOGY 2021; 111:1500-1508. [PMID: 33487022 DOI: 10.1094/phyto-11-20-0512-per] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using the correct name for phytopathogenic fungi and oomycetes is essential for communicating knowledge about species and their biology, control, and quarantine as well as for trade and research purposes. However, many plant pathogenic fungi are pleomorphic, meaning they produce different asexual (anamorph) and sexual (teleomorph) morphs in their life cycles. Therefore, more than one name has been applied to different morphs of the same species, which has confused users. The onset of DNA technologies makes it possible to connect different morphs of the same species, resulting in a move to a more natural classification system for fungi in which a single name for a genus and species can now be used. This move to a single nomenclature, coupled with the advent of molecular systematics and the introduction of polythetic taxonomic approaches, has been the main driving force for a reclassification of fungi, including pathogens. Nonetheless, finding the correct name for species remains challenging. In this article we outline a series of steps or considerations to greatly simplify this process and provide links to various online databases and resources to aid in determining the correct name. Additionally, a list of accurate names is provided for the most common genera and species of phytopathogenic fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre, Laboratory of Phytopathology, 6708 PB Wageningen, The Netherlands
| | - Amy Y Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - W Cavan Allen
- U.S. Department of Agriculture-Agriculture Research Service Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD 20705, U.S.A
| | - Treena Burgess
- Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
| | | | - Lisa A Castlebury
- U.S. Department of Agriculture-Agriculture Research Service Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD 20705, U.S.A
| |
Collapse
|
3
|
Hannat S, Pontarotti P, Colson P, Kuhn ML, Galiana E, La Scola B, Aherfi S, Panabières F. Diverse Trajectories Drive the Expression of a Giant Virus in the Oomycete Plant Pathogen Phytophthora parasitica. Front Microbiol 2021; 12:662762. [PMID: 34140938 PMCID: PMC8204020 DOI: 10.3389/fmicb.2021.662762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Giant viruses of amoebas, recently classified in the class Megaviricetes, are a group of viruses that can infect major eukaryotic lineages. We previously identified a set of giant virus sequences in the genome of Phytophthora parasitica, an oomycete and a devastating major plant pathogen. How viral insertions shape the structure and evolution of the invaded genomes is unclear, but it is known that the unprecedented functional potential of giant viruses is the result of an intense genetic interplay with their hosts. We previously identified a set of giant virus sequences in the genome of P. parasitica, an oomycete and a devastating major plant pathogen. Here, we show that viral pieces are found in a 550-kb locus and are organized in three main clusters. Viral sequences, namely RNA polymerases I and II and a major capsid protein, were identified, along with orphan sequences, as a hallmark of giant viruses insertions. Mining of public databases and phylogenetic reconstructions suggest an ancient association of oomycetes and giant viruses of amoeba, including faustoviruses, African swine fever virus (ASFV) and pandoraviruses, and that a single viral insertion occurred early in the evolutionary history of oomycetes prior to the Phytophthora–Pythium radiation, estimated at ∼80 million years ago. Functional annotation reveals that the viral insertions are located in a gene sparse region of the Phytophthora genome, characterized by a plethora of transposable elements (TEs), effectors and other genes potentially involved in virulence. Transcription of viral genes was investigated through analysis of RNA-Seq data and qPCR experiments. We show that most viral genes are not expressed, and that a variety of mechanisms, including deletions, TEs insertions and RNA interference may contribute to transcriptional repression. However, a gene coding a truncated copy of RNA polymerase II along a set of neighboring sequences have been shown to be expressed in a wide range of physiological conditions, including responses to stress. These results, which describe for the first time the endogenization of a giant virus in an oomycete, contribute to challenge our view of Phytophthora evolution.
Collapse
Affiliation(s)
- Sihem Hannat
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Pierre Pontarotti
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,CNRS SNC5039, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Marie-Line Kuhn
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | | |
Collapse
|
4
|
Nguyen HDT, McCormick W, Eyres J, Eggertson Q, Hambleton S, Dettman JR. Development and evaluation of a target enrichment bait set for phylogenetic analysis of oomycetes. Mycologia 2021; 113:856-867. [PMID: 33945437 DOI: 10.1080/00275514.2021.1889276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Target enrichment is a term that encompasses multiple related approaches where desired genomic regions are captured by molecular baits, leaving behind redundant or non-target regions in the genome, followed by amplification and next-generation sequencing of those captured regions. A molecular bait set was developed based on 426 single-copy, oomycete-specific orthologs and 3 barcoding genes. The bait set was tested on 27 oomycete samples (belonging to the Saprolegniales, Albuginales, and Peronosporales) derived from live and herbarium specimens, as well as control samples of true fungi and plants. Results show that (i) our method greatly enriches for the targeted orthologs on oomycete samples, but insignificantly on fungal and plant samples; (ii) an average of 263 out of 429 orthologs (61%) were recovered from oomycete live and herbarium specimens; (iii) sequencing roughly 100 000 read pairs per sample is sufficient for optimal ortholog recovery while maintaining low sequencing costs; and (iv) the expected relationships were recovered by phylogenetic analysis from the data generated. This is the first report of an oomycete-specific target enrichment method with broad potential applications for evolutionary and taxonomic studies. A key benefit of our target enrichment method is that it allows researchers to easily unlock the vast and unexplored oomycete genomic diversity stored in natural history collections.
Collapse
Affiliation(s)
- Hai D T Nguyen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Wayne McCormick
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Jackson Eyres
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Quinn Eggertson
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Sarah Hambleton
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Jeremy R Dettman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
5
|
Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLoS One 2020; 15:e0225808. [PMID: 32396560 PMCID: PMC7217449 DOI: 10.1371/journal.pone.0225808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Peronospora effusa (previously known as P. farinosa f. sp. spinaciae, and here referred to as Pfs) is an obligate biotrophic oomycete that causes downy mildew on spinach (Spinacia oleracea). To combat this destructive many disease resistant cultivars have been bred and used. However, new Pfs races rapidly break the employed resistance genes. To get insight into the gene repertoire of Pfs and identify infection-related genes, the genome of the first reference race, Pfs1, was sequenced, assembled, and annotated. Due to the obligate biotrophic nature of this pathogen, material for DNA isolation can only be collected from infected spinach leaves that, however, also contain many other microorganisms. The obtained sequences can, therefore, be considered a metagenome. To filter and obtain Pfs sequences we utilized the CAT tool to taxonomically annotate ORFs residing on long sequences of a genome pre-assembly. This study is the first to show that CAT filtering performs well on eukaryotic contigs. Based on the taxonomy, determined on multiple ORFs, contaminating long sequences and corresponding reads were removed from the metagenome. Filtered reads were re-assembled to provide a clean and improved Pfs genome sequence of 32.4 Mbp consisting of 8,635 scaffolds. Transcript sequencing of a range of infection time points aided the prediction of a total of 13,277 gene models, including 99 RxLR(-like) effector, and 14 putative Crinkler genes. Comparative analysis identified common features in the predicted secretomes of different obligate biotrophic oomycetes, regardless of their phylogenetic distance. Their secretomes are generally smaller, compared to hemi-biotrophic and necrotrophic oomycete species. We observe a reduction in proteins involved in cell wall degradation, in Nep1-like proteins (NLPs), proteins with PAN/apple domains, and host translocated effectors. The genome of Pfs1 will be instrumental in studying downy mildew virulence and for understanding the molecular adaptations by which new isolates break spinach resistance.
Collapse
Affiliation(s)
- Joël Klein
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Manon Neilen
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Marcel van Verk
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- Crop Data Science, KeyGene, Wageningen, The Netherlands
| | - Bas E. Dutilh
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Guido Van den Ackerveken
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Weiblen C, Robe LJ, de Azevedo MI, Ianiski LB, Stibbe PC, Ribeiro TC, Zanette RA, Pereira DIB, Santurio JM, Botton SDA. New insights on evolutionary aspects of Pythium insidiosum and other peronosporaleans. Mycoses 2020; 63:395-406. [PMID: 32012366 DOI: 10.1111/myc.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The evolution of pathogenic mechanisms is a major challenge, which requires a thorough comprehension of the phylogenetic relationships of pathogens. Peronosporaleans encompasses a heterogeneous group of oomycetes that includes some animal/human pathogens, like Pythium insidiosum. OBJECTIVE We analysed here the phylogenetic positioning and other evolutionary aspects related to this species and other peronosporaleans, using a multi-locus approach with one mitochondrial and three nuclear genes. METHODOLOGY Phylogenetic patterns of 55 oomycetes were inferred by maximum likelihood and Bayesian analysis, and a relaxed molecular clock method was applied to infer the divergence time of some peronosporaleans branches. RESULTS Pythium insidiosum was monophyletic with a major and polytomous clade of American isolates; however, Pythium spp. was found to be paraphyletic with Phytopythium sp. and Phytophthora spp. In general, peronosporaleans subdivided into four lineages, one of which evidenced a close relationship of P insidiosum, P aphanidermatum and P arrhenomanes. This lineage diverged about 63 million years ago (Mya), whereas P insidiosum diversified at approximately 24 Mya. The divergence of American and Thai isolates seems to have occurred at approximately 17 Mya, with further American diversification at 2.4 Mya. CONCLUSION Overall, this study clarifies the phylogenetic relationships of P insidiosum regarding other peronosporaleans in a multi-locus perspective, despite previous claims that phylogenomic analyses are needed to accurately infer the patterns and processes related to the evolution of different lineages in this group. Additionally, this is the first time that a molecular clock was applied to study the evolution of P insidiosum.
Collapse
Affiliation(s)
- Carla Weiblen
- Programa de Pós Graduação em Medicina Veterinária (PPGMV)/Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Lizandra Jaqueline Robe
- Programa de Pós Graduação em Biodiversidade Animal (PPGBA)/Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Maria Isabel de Azevedo
- Faculdade de Medicina Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lara Baccarin Ianiski
- Programa de Pós Graduação em Ciências Farmacêuticas/PPGCF, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Paula Cristina Stibbe
- Programa de Pós Graduação em Ciências Farmacêuticas/PPGCF, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Tatiana Correa Ribeiro
- Programa de Pós Graduação em Farmacologia UFSM, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Régis Adriel Zanette
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Janio Morais Santurio
- Programa de Pós Graduação em Farmacologia UFSM, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Sônia de Avila Botton
- Programa de Pós Graduação em Medicina Veterinária (PPGMV)/Centro de Ciências Rurais (CCR), Programa de Pós Graduação em Ciências Farmacêuticas/PPGCF, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
7
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
8
|
Abstract
It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well.
Collapse
|
9
|
Savory FR, Milner DS, Miles DC, Richards TA. Ancestral Function and Diversification of a Horizontally Acquired Oomycete Carboxylic Acid Transporter. Mol Biol Evol 2019; 35:1887-1900. [PMID: 29701800 PMCID: PMC6063262 DOI: 10.1093/molbev/msy082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer (HGT) can equip organisms with novel genes, expanding the repertoire of genetic material available for evolutionary innovation and allowing recipient lineages to colonize new environments. However, few studies have characterized the functions of HGT genes experimentally or examined postacquisition functional divergence. Here, we report the use of ancestral sequence reconstruction and heterologous expression in Saccharomyces cerevisiae to examine the evolutionary history of an oomycete transporter gene family that was horizontally acquired from fungi. We demonstrate that the inferred ancestral oomycete HGT transporter proteins and their extant descendants transport dicarboxylic acids which are intermediates of the tricarboxylic acid cycle. The substrate specificity profile of the most ancestral protein has largely been retained throughout the radiation of oomycetes, including in both plant and animal pathogens and in a free-living saprotroph, indicating that the ancestral HGT transporter function has been maintained by selection across a range of different lifestyles. No evidence of neofunctionalization in terms of substrate specificity was detected for different HGT transporter paralogues which have different patterns of temporal expression. However, a striking expansion of substrate range was observed for one plant pathogenic oomycete, with a HGT derived paralogue from Pythium aphanidermatum encoding a protein that enables tricarboxylic acid uptake in addition to dicarboxylic acid uptake. This demonstrates that HGT acquisitions can provide functional additions to the recipient proteome as well as the foundation material for the evolution of expanded protein functions.
Collapse
Affiliation(s)
- Fiona R Savory
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David S Milner
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel C Miles
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Rujirawat T, Patumcharoenpol P, Lohnoo T, Yingyong W, Kumsang Y, Payattikul P, Tangphatsornruang S, Suriyaphol P, Reamtong O, Garg G, Kittichotirat W, Krajaejun T. Probing the Phylogenomics and Putative Pathogenicity Genes of Pythium insidiosum by Oomycete Genome Analyses. Sci Rep 2018. [PMID: 29515152 PMCID: PMC5841299 DOI: 10.1038/s41598-018-22540-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pythium insidiosum is a human-pathogenic oomycete. Many patients infected with it lose organs or die. Toward the goal of developing improved treatment options, we want to understand how Py. insidiosum has evolved to become a successful human pathogen. Our approach here involved the use of comparative genomic and other analyses to identify genes with possible functions in the pathogenicity of Py. insidiosum. We generated an Oomycete Gene Table and used it to explore the genome contents and phylogenomic relationships of Py. insidiosum and 19 other oomycetes. Initial sequence analyses showed that Py. insidiosum is closely related to Pythium species that are not pathogenic to humans. Our analyses also indicated that the organism harbours secreted and adhesin-like proteins, which are absent from related species. Putative virulence proteins were identified by comparison to a set of known virulence genes. Among them is the urease Ure1, which is absent from humans and thus a potential diagnostic and therapeutic target. We used mass spectrometric data to successfully validate the expression of 30% of 14,962 predicted proteins and identify 15 body temperature (37 °C)-dependent proteins of Py. insidiosum. This work begins to unravel the determinants of pathogenicity of Py. insidiosum.
Collapse
Affiliation(s)
- Thidarat Rujirawat
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.,Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yothin Kumsang
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Penpan Payattikul
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gagan Garg
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Floreat, WA, Australia
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|