1
|
Nelson HV, Georges A, Farquharson KA, McLennan EA, DeGabriel JL, Belov K, Hogg CJ. A Genomic-Based Workflow for eDNA Assay Development for a Critically Endangered Turtle, Myuchelys georgesi. Ecol Evol 2025; 15:e70798. [PMID: 39781257 PMCID: PMC11707621 DOI: 10.1002/ece3.70798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA. In this study, we designed eDNA primers for the critically endangered Bellinger River turtle (Myuchelys georgesi) using a bioinformatically assembled mitochondrial genome (mitogenome) derived from a reference genome. We confirmed the accuracy of this assembled mitogenome by comparing it to a Sanger-sequenced mitogenome of the same species, and no base pair mismatches were detected. Using the bioinformatically extracted mitogenome, we designed two 20 bp primers that target a 152-base-pair-long fragment of the cytochrome oxidase 1 (CO1) gene and a 186-base-pair-long fragment of the cytochrome B (CytB) gene. Both primers were successfully validated in silico, in vitro, and in situ.
Collapse
Affiliation(s)
- Holly V. Nelson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Katherine A. Farquharson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Elspeth A. McLennan
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jane L. DeGabriel
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Thomson SA, Friol NR, White A, Wedd D, Georges A. The Australian gulf snapping turtle Elseya lavarackorum (Testudines: Chelidae) revisited—Is the late Pleistocene fossil species extant? VERTEBRATE ZOOLOGY 2023. [DOI: 10.3897/vz.73.e99495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Disagreement exists on the taxonomic identity of the extant populations of the Australian Elseya referred to in 1992 as the gulf Elseya (= Elseya sp. aff. dentata [Nicholson]). The extant form has since 1997 been considered conspecific with the late Pleistocene fossil Elseya lavarackorum (White and Archer, 1994). Recently it has been considered a new species, Elseya oneirosJoseph-Ouni et al., 2020, conspecific with another fossil found in the same site and stratum as Elseya lavarackorum. Here we re-examine the fossil material and reassess the characters used by previous authors in an attempt to decide the issue. We find that the anterior bridge suture with the carapace of the fossil Elseya lavarackorum is associated with extensive and prominent plastral elements, which has led to misinterpretation of characters associated with this structure. We furthermore show that interindividual variation in sulci patterns is so great as to render them of little taxonomic value. On the basis of (a) deviation of the anterior shape of the carapace from ovoid such that, in aged individuals, the most anterior point of the carapace occurs at marginal scutes M2 (a resultant nuchal bay occurs in such individuals); (b) the typical absence of a cervical scute; (c) no evidence of a medial constriction in the anterior bridge strut suture; and (d) absence of evidence of any other informative variation of taxonomic value; we conclude that the decision to consider the late Pleistocene (ca 23 kyr old) fossil and the extant Elseya sp. aff. dentata [Nicholson] as Elseya lavarackorum (White and Archer, 1994) as conspecific should stand.
Collapse
|
3
|
Mitochondrial DNA and Distribution Modelling Evidenced the Lost Genetic Diversity and Wild-Residence of Star Tortoise, Geochelone elegans (Testudines: Testudinidae) in India. Animals (Basel) 2022; 13:ani13010150. [PMID: 36611759 PMCID: PMC9817980 DOI: 10.3390/ani13010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The Indian star tortoise (Geochelone elegans) is a massively traded animal in South Asia. To mitigate this risk, the conservation agencies recommended guidelines to safeguard this charismatic species in nature. We adopted mitochondrial DNA-based investigation and performed species distribution modeling of G. elegans throughout its distribution range in the Indian subcontinent. The genetic analyses revealed weak genetic landscape shape interpolations, low intraspecific distances (0% to 1.5%) with mixed haplotype diversity, and a single molecular operational taxonomic unit (MOTU) in the cytochrome b gene dataset. The star tortoise, G. elegans, and its sister species Geochelone platynota showed a monophyletic clustering in the Bayesian (BA) phylogeny. We also attempt to understand the habitat suitability and quality of G. elegans in its distribution range. Our results suggest that, out of the extant area, only 56,495 km2 (9.90%) is suitable for this species, with regions of highest suitability in Sri Lanka. Comparative habitat quality estimation suggests the patch shape complexity and habitat fragmentation are greater in the western and southern ranges of India, which have been greatly influenced by an increased level of urbanization and agriculture practices. We have also provided a retrospect on the potential threat to G. elegans related to the wildlife trade on the regional and international spectrum. Our results detected multiple trading hubs and junctions overlying within the suitable ranges which need special attention in the vicinity. The present study calls for a proper conservation strategy to combat the fragmented distribution and explicitly recommends intensive genetic screening of founder individuals or isolated adult colonies, implementing scientific breeding, and subsequent wild release to restore the lost genetic diversity of star tortoises.
Collapse
|
4
|
Complete Mitogenome of Oreolalax Omeimontis Reveals Phylogenetic Status and Novel Gene Arrangement of Archaeobatrachia. Genes (Basel) 2022; 13:genes13112089. [DOI: 10.3390/genes13112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Species of the genus Oreolalax displayed crucial morphological characteristics of vertebrates transitioning from aquatic to terrestrial habitats; thus, they can be regarded as a representative vertebrate genus for this landing phenomenon. But the present phylogenetic status of Oreolalax omeimontis has been controversial with morphological and molecular approaches, and specific gene rearrangements were discovered in all six published Oreolalax mitogenomes, which are rarely observed in Archaeobatrachia. Therefore, this study determined the complete mitogenome of O. omeimontis with the aim of identifying its precise phylogenetic position and novel gene arrangement in Archaeobatrachia. Phylogenetic analysis with Bayesian inference and maximum likelihood indicates O. omeimontis is a sister group to O. lichuanensis, which is consistent with previous phylogenetic analysis based on morphological characteristics, but contrasts with other studies using multiple gene fragments. Moreover, although the duplication of trnM occurred in all seven Oreolalax species, the translocation of trnQ and trnM occurred differently in O. omeimontis to the other six, and this unique rearrangement would happen after the speciation of O. omeimontis. In general, this study sheds new light on the phylogenetic relationships and gene rearrangements of Archaeobatrachia.
Collapse
|
5
|
Dornburg A, Near TJ. The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-122120-122554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina 28223, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
6
|
Luo H, Li H, Huang A, Ni Q, Yao Y, Xu H, Zeng B, Li Y, Wei Z, Yu G, Zhang M. The Complete Mitochondrial Genome of Platysternon megacephalum peguense and Molecular Phylogenetic Analysis. Genes (Basel) 2019; 10:E487. [PMID: 31252631 PMCID: PMC6678547 DOI: 10.3390/genes10070487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Platysternon megacephalum is the only living representative species of Platysternidae and only three subspecies remain: P. m. megalorcephalum, P. m. shiui, and P. m. peguense. However, previous reports implied that P. m. peguense has distinct morphological and molecular features. The characterization of the mitogenome has been accepted as an efficient means of phylogenetic and evolutionary analysis. Hence, this study first determined the complete mitogenome of P. m. peguense with the aim to identify the structure and variability of the P. m. peguense mitogenome through comparative analysis. Furthermore, the phylogenetic relationship of the three subspecies was tested. Based on different tRNA gene loss and degeneration of these three subspecies, their rearrangement pathways have been inferred. Phylogenetic analysis showed that P. m. peguense is a sister group to (P. m. megalorcephalum and P. m. shiui). Furthermore, the divergence time estimation of these three subspecies coincided with the uplift of the Tibetan Plateau. This study shows that the genetic distances between P. m. peguense and the other two subspecies are comparable to interspecific genetic distances, for example within Mauremys. In general, this study provides new and meaningful insights into the evolution of the three Platysternidae subspecies.
Collapse
Affiliation(s)
- Hongdi Luo
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haijun Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - An Huang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qingyong Ni
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Bo Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ying Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhimin Wei
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, Hebei, China
| | - Guohua Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, Guangxi, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Mingwang Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Kehlmaier C, Zhang X, Georges A, Campbell PD, Thomson S, Fritz U. Mitogenomics of historical type specimens of Australasian turtles: clarification of taxonomic confusion and old mitochondrial introgression. Sci Rep 2019; 9:5841. [PMID: 30967590 PMCID: PMC6456567 DOI: 10.1038/s41598-019-42310-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 11/12/2022] Open
Abstract
Diagnosability is central to taxonomy as are type specimens which define taxa. New advances in technologies and the discovery of new informative traits must be matched with previous taxonomic decisions based on name-bearing type specimens. Consequently, the challenge of sequencing highly degraded DNA from historical types becomes an inevitability to resolve the very many taxonomic issues arising from, by modern standards, poor historical species descriptions leading to difficulties to assign names to genetic clusters identified from fresh material. Here we apply high-throughput parallel sequencing and sequence baiting to reconstruct the mitogenomes from 18 type specimens of Australasian side-necked turtles (Chelidae). We resolve a number of important issues that have confused the taxonomy of this family, and analyse the mitogenomes of the types and those of fresh material to improve our understanding of the phylogenetic relationships of this morphologically conservative group. Together with previously published nuclear genomic data, our study provides evidence for multiple old mitochondrial introgressions.
Collapse
Affiliation(s)
| | - Xiuwen Zhang
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Patrick D Campbell
- Department of Life Sciences, Darwin Centre (DC1), Natural History Museum, London, SW7 5BD, England, UK
| | - Scott Thomson
- Chelonian Research Institute, Oviedo, Florida, USA
- Museu de Zoologia, Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, São Paulo, SP, 04263-000, Brazil
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, 01109, Dresden, Germany.
| |
Collapse
|