1
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
2
|
Rocha VDD, Dal'Sasso TCDS, Dal-Bianco M, Oliveira LOD. Genome-wide survey and evolutionary history of the pectin methylesterase (PME) gene family in the Dothideomycetes class of fungi. Fungal Genet Biol 2023; 169:103841. [PMID: 37797717 DOI: 10.1016/j.fgb.2023.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Once deposited in the plant cell wall, pectin undergoes demethylesterification by endogenous pectin methylesterases (PMEs), which play various roles in growth and development, including defense against pathogen attacks. Pathogen PMEs can alter pectin's methylesterification pattern, increasing its susceptibility to degradation by other fungal pectinases and thus playing a critical role as virulence factors during early infection stages. To investigate the evolutionary history of PMEs in the Dothideomycetes class of fungi, we obtained genomic data from 15 orders (79 species) and added genomic data from 61 isolates of Corynespora cassiicola. Our analyses involved maximum likelihood phylogenies, gene genealogies, and selection analyses. Additionally, we measured PME gene expression levels of C. cassiicola using soybean as a host through RT-qPCR assays. We recovered 145 putative effector PMEs and 57 putative non-effector PMEs from across the Dothideomycetes. The PME gene family exhibits a small size (up to 5 members per genome) and comprises three major clades. The evolutionary patterns of the PME1 and PME2 clades were largely shaped by duplications and recurring gene retention events, while biased gene loss characterized the small-sized PME3 clade. The presence of five members in the PME gene family of C. cassiicola suggests that the family may play a key role in the evolutionary success of C. cassiicola as a polyphagous plant pathogen. The haplogroups Cc_PME1.1 and Cc_PME1.2 exhibited an accelerated rate of evolution, whereas Cc_PME2.1, Cc_PME2.2, and Cc_PME2.3 seem to be under strong purifying selective constraints. All five PME genes were expressed during infection of soybean leaves, with the highest levels during from six to eight days post-inoculation. The highest relative expression level was measured for CC_29_g7533, a member of the Cc_PME2.3 clade, while the remaining four genes had relatively lower levels of expression.
Collapse
Affiliation(s)
| | | | - Maximiller Dal-Bianco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
3
|
Dal'Sasso TCDS, Rocha VDD, Rody HVS, Costa MDBL, Oliveira LOD. The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola. Curr Genet 2022; 68:645-659. [PMID: 36098767 DOI: 10.1007/s00294-022-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Effectors are secreted by plant-associated microorganisms to modify the host cell physiology. As effectors, the Necrosis- and Ethylene-inducing peptide 1-like proteins (NLPs) are involded in the early phases of plant infection and may trigger host immune responses. Corynespora cassiicola is a polyphagous plant pathogen that causes target spot on many agriculturally important crops. Using genome assembly, gene prediction, and proteome annotation tools, we retrieved 135 NLP-encoding genes from proteomes of 44 isolates. We explored the evolutionary history of NLPs using Bayesian phylogeny, gene genealogies, and selection analyses. We accessed the expression profiles of the NLP genes during the early phase of C. cassiicola-soybean interaction. Three NLP putative-effector genes (Cc_NLP1.1, Cc_NLP1.2A, and Cc_NLP1.2B) were maintained in the genomes of all isolates tested. An NLP putative-non-effector gene (Cc_NLP1.3) was found in three isolates that had been originally obtained from soybean. Putative-effector NLPs were under different selective constraints: Cc_NLP1.1 was under stronger selective pressure, while Cc_NLP1.2A was under a more relaxed constraint. Meanwhile, Cc_NLP1.2B likely evolved under either positive or balancing selection. Despite highly divergent, the putative-effector NLPs maintain conserved the residues necessary to trigger plant immune responses, suggesting they are potentially functional. Only the Cc_NLP1.1 putative-effector gene was significantly expressed at the early hours of soybean colonization, while Cc_NLP1.2A and Cc_NLP1.2B showed much lower levels of gene expression.
Collapse
Affiliation(s)
| | | | - Hugo Vianna Silva Rody
- Departamento de Genética, Universidade de São Paulo/Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, Brazil
| | | | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
4
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
5
|
Chen X, Xu J, Wong NK, Zhong S, Yang M, Liu Z, Lu Y, Li W, Zhou Y. Chemoproteomic Profiling of Cobalamin-Independent Methionine Synthases in Plants with a Covalent Probe. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8050-8056. [PMID: 32618189 DOI: 10.1021/acs.jafc.0c03301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cobalamin-independent methionine synthases (MS) are zinc-binding methyltransferases that catalyze de novo methionine biosynthesis in higher plants, which are enzymes critically involved in seed germination and plant growth. Here, we report a highly selective sulfonyl fluoride-based probe for chemoproteomic profiling of MS enzymes in living systems of the model plant Arabidopsis thaliana, as implemented in in-gel-, mass spectrometry-, and imaging-based platforms. This probe holds promise for facilitating and accelerating fundamental research and industrial application of MS enzymes, particularly in the contexts of MS1/2-targeting herbicide screening and design.
Collapse
Affiliation(s)
- Xin Chen
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Suyun Zhong
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Mengquan Yang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen Liu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yan Lu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Evolutionary history of Manihot carthagenensis (Euphorbiaceae) and allied species in eastern South America. Mol Phylogenet Evol 2018; 132:207-218. [PMID: 30562609 DOI: 10.1016/j.ympev.2018.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022]
Abstract
Intermittent episodes of climate changes, such as those that occurred during the Pleistocene, likely shaped the diversification of the young genus Manihot Mill. (Euphorbiacheae). One of such recently-derived congeners ─ M. carthagenensis ─ exhibits a widely disjunct distribution across dry environments in Eastern South America. Herein, we used molecular data from four nuclear gene regions (sts, ch_metE, g3pdh, and nia-i3) and seven nuclear microsatellite loci for reconstructing the phylogenetic relationships among M. carthagenensis and allied species and exploring likely phylogeographic scenarios that shaped the diversification and the distribution of gene pools of M. carthagenensis across the Caatinga and Chaco. Our data suggest that M. carthagenensis is not a monophyletic clade, as presently circumscribed. Morphological differences, genealogical relationships, and vegetation associations support three well-differentiated lineages, each of which merits the species rank: M. carthagenensis, M. glaziovii, and M. hahnii. Microsatellite data suggest that the newly circumscribed M. carthagenensis consists of at least three distinct gene pools, which are partly structured according to geography. The three gene pools likely evolved in allopatry, but remained interfertile. Population expansions after climate amelioration contributed to structuring hybrid zones. Moreover, we described two new single-copy gene regions (sts and ch_metE) as sources of molecular variation; they can facilitate the fine-scale probing of other parts of the phylogeny across Manihot.
Collapse
|