1
|
Fourreau CJL, Kise H, Santander MD, Pirro S, Maronna MM, Poliseno A, Santos ME, Reimer JD. Genome sizes and repeatome evolution in zoantharians (Cnidaria: Hexacorallia: Zoantharia). PeerJ 2023; 11:e16188. [PMID: 37868064 PMCID: PMC10586311 DOI: 10.7717/peerj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Across eukaryotes, large variations of genome sizes have been observed even between closely related species. Transposable elements as part of the repeated DNA have been proposed and confirmed as one of the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and transposable element dynamics are not well understood. Together with phenotypic traits, they are commonly referred to as the "C-value enigma". The order Zoantharia are benthic cnidarians found from intertidal zones to the deep sea, and some species are particularly abundant in coral reefs. Despite their high ecological relevance, zoantharians have yet to be largely studied from the genomic point of view. This study aims at investigating the role of the repeatome (total content of repeated elements) in genome size variations across the order Zoantharia. To this end, whole-genomes of 32 zoantharian species representing five families were sequenced. Genome sizes were estimated and the abundances of different repeat classes were assessed. In addition, the repeat overlap between species was assessed by a sequence clustering method. The genome sizes in the dataset varied up to 2.4 fold magnitude. Significant correlations between genome size, repeated DNA content and transposable elements, respectively (Pearson's correlation test R2 = 0.47, p = 0.0016; R2 = 0.22, p = 0.05) were found, suggesting their involvement in the dynamics of genome expansion and reduction. In all species, long interspersed nuclear elements and DNA transposons were the most abundant identified elements. These transposable elements also appeared to have had a recent expansion event. This was in contrast to the comparative clustering analysis which revealed species-specific patterns of satellite elements' amplification. In summary, the genome sizes of zoantharians likely result from the complex dynamics of repeated elements. Finally, the majority of repeated elements (up to 70%) could not be annotated to a known repeat class, highlighting the need to further investigate non-model cnidarian genomes. More research is needed to understand how repeated DNA dynamics relate to zoantharian evolution and their biology.
Collapse
Affiliation(s)
- Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- AIST Tsukuba Central, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mylena Daiana Santander
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stacy Pirro
- Iridian Genomes, Bethesda, United States of America
| | - Maximiliano M. Maronna
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Maria E.A. Santos
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, United States of America
| |
Collapse
|
2
|
Kise H, Eduarda Alves Santos M, Julie Loïs Fourreau C, Iguchi A, Goto R, Davis Reimer J. Evolutionary patterns of host switching, lifestyle mode, and the diversification history in symbiotic zoantharians. Mol Phylogenet Evol 2023; 182:107732. [PMID: 36781031 DOI: 10.1016/j.ympev.2023.107732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Symbioses play important roles in forming the structural and distributional patterns of marine diversity. Understanding how interspecies interactions through symbioses contribute to biodiversity is an essential topic. Host switching has been considered as one of the main drivers of diversification in symbiotic systems. However, its process and patterns remain poorly investigated in the marine realm. Hexacoral species of the order Zoantharia (=zoantharians) are often epizoic on other marine invertebrates and generally use specific taxa as hosts. The present study investigates the patterns of host switching and the diversification history of zoantharians based on the most comprehensive molecular phylogenetic analyses to date, using sequences from three mitochondrial and three nuclear markers from representatives of 27 of 29 genera. Our results indicate that symbiotic zoantharians, in particular those within suborder Macrocnemina, diversified through repeated host switching. In addition, colonization of new host taxa appears to have driven morphological and ecological specialization in zoantharians. These findings have important implications for understanding the role of symbioses in the morphological and ecological evolution of marine invertebrates.
Collapse
Affiliation(s)
- Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.
| | - Maria Eduarda Alves Santos
- Okinawa Institute of Science and Technology Graduate University, Evolution, Cell Biology, and Symbiosis Unit, Okinawa 904-0495, Japan
| | - Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Ryutaro Goto
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama 649-2211, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
3
|
Fujii T, Alves Dos Santos ME, Reimer JD. A New Species of Sea Whip Gorgonian-Associated Zoantharian (Cnidaria: Anthozoa: Hexacorallia: Parazoanthidae) from the Ryukyu Islands, Japan, with Subgeneric Subdivision of Genus Umimayanthus. Zoolog Sci 2021; 38:466-480. [PMID: 34664922 DOI: 10.2108/zs200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Symbioses between invertebrates are common in the ocean although usually the diversity and specificity of their interactions are not well understood. Parazoanthidae (Cnidaria: Anthozoa: Zoantharia) is one of the most diverse zoantharian families in terms of numbers of genera and species. Species in this family are commonly associated with various other invertebrates that they utilize as their substrate. Previous studies have re-organized the taxonomy of Parazoanthidae and revealed a strong specificity between many parazoanthid species and genera and their substrates. However, our understanding of the species diversity of Parazoanthidae is far from complete, as parazoanthids are often overlooked in sampling surveys. In this study, we establish three subgenera under the genus Umimayanthus Montenegro, Sinniger, and Reimer, 2015; the nominotypical Umimayanthus, Paraumimayanthus subgen nov., and Gorgoniazoanthus subgen. nov., based on the finding of a new species, Umimayanthus (Gorgoniazoanthus) kanabou sp. nov., associated with the sea-whip gorgonian Ellisella sp. from approximately 30 m depth in shallow mesophotic coral reef communities in Oura Bay on Okinawajima Island and in Oshima Strait near Amami-Oshima Island, in the Ryukyu Islands, southern Japan. We additionally report on gastropods and crustaceans observed in association with U. kanabou, and these species are thought to potentially prey upon the zoantharians or on gorgonian polyps. Umimayanthus kanabou is phylogenetically closely related to congeneric sponge-associated Umimayanthus spp., further supporting the recent hypothesis that substrate preferences may change during the evolutionary history of zoantharians.
Collapse
Affiliation(s)
- Takuma Fujii
- International Center for Island Studies, Kagoshima University, Amami, Kagoshima 894-0026, Japan, .,Kagoshima City Aquarium, Kagoshima, Kagoshima 892-0814, Japan
| | - Maria Eduarda Alves Dos Santos
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
4
|
Nakano H, Jimi N, Sasaki T, Kajihara H. Sinking Down or Floating Up? Current State of Taxonomic Studies on Marine Invertebrates in Japan Inferred from the Number of New Species Published between the Years 2003 and 2020. Zoolog Sci 2021; 39:7-15. [DOI: 10.2108/zs210076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Naoto Jimi
- Sugashima Marine Biological Laboratory, Nagoya University, 429-63 Sugashima, Toba, Mie 517-0004, Japan
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Kajihara
- Faculty of Science, Hokkaido University, Kita-ku N10E8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
5
|
Kise H, Montenegro J, Santos MEA, Hoeksema BW, Ekins M, Ise Y, Higashiji T, Fernandez-Silva I, Reimer JD. Evolution and phylogeny of glass-sponge-associated zoantharians, with a description of two new genera and three new species. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Hexactinellid sponges are important members of deep-sea benthic ecosystems because they provide available hard substrate habitats for filter-feeding invertebrates. However, symbioses between hexactinellid sponges and their symbionts are poorly known. Zoantharians associated with hexactinellid sponges have been reported widely from deep-sea marine ecosystems, either on the bodies or stalks of hexactinellid sponges. Despite these records, there has been a lack of research on their diversity and phylogenetic relationships. In this study, 20 specimens associated with amphidiscophoran and hexasterophoran sponges were collected from the waters of Australia and Japan in the Pacific, and from Curaçao in the southern Caribbean, and these were examined in addition to museum specimens. Based on molecular phylogenetic analyses and morphological observations, we formally describe two new genera and three new species of Zoantharia and report several previously described species. The results suggest at least two independent origins for the symbioses between hexactinellid sponges and zoantharians. Our results demonstrate that the diversity of hexactinellid sponge-associated zoantharians is much higher than has been previously thought. The new taxa described in this work further reconfirm that the deep-sea harbours high levels of undescribed zoantharian diversity.
Collapse
Affiliation(s)
- Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
| | - Maria E A Santos
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
- Okinawa Institute of Science and Technology, Evolution, Cell Biology and Symbiosis Unit, Onna, Okinawa, Japan
| | - Bert W Hoeksema
- Taxonomy, Systematics, and Geodiversity Group, Naturalis Biodiversity Center, RA Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Merrick Ekins
- Queensland Museum, South Brisbane, 4101, Brisbane, Queensland, Australia
- Griffith Institute of Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Yuji Ise
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Takuo Higashiji
- Okinawa Churaumi Aquarium, Okinawa Churashima Foundation, 424 Ishikawa, Motobu, Okinawa, Japan
| | - Iria Fernandez-Silva
- Department of Biochemistry, Genetics and Immunology (School of Biology), University of Vigo, Vigo, Spain
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, Japan
| |
Collapse
|
6
|
Poliseno A, Santos MEA, Kise H, Macdonald B, Quattrini AM, McFadden CS, Reimer JD. Evolutionary implications of analyses of complete mitochondrial genomes across order Zoantharia (Cnidaria: Hexacorallia). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
| | - Maria Eduarda Alves Santos
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
| | | | - Andrea M. Quattrini
- Department of Biology Harvey Mudd College Claremont CA USA
- Department of Invertebrate Zoology National Museum of Natural History, Smithsonian Institution Washington, DC USA
| | | | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| |
Collapse
|
7
|
Kise H, Montenegro J, Ekins M, Moritaki T, Reimer JD. A molecular phylogeny of carcinoecium-forming Epizoanthus (Hexacorallia: Zoantharia) from the Western Pacific Ocean with descriptions of three new species. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1693439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Merrick Ekins
- 3Queensland Museum, PO Box 3300, South Brisbane, Brisbane, Queensland, 4101, Australia
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|