1
|
Nie L, Fang Y, Xia Z, Wei X, Wu Z, Yan Y, Wang F. Relationships within Bolbitis sinensis Species Complex Using RAD Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:1987. [PMID: 39065514 PMCID: PMC11280518 DOI: 10.3390/plants13141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Species identification and phylogenetic relationship clarification are fundamental goals in species delimitation. However, these tasks pose challenges when based on morphologies, geographic distribution, and genomic data. Previously, two species of the fern genus Bolbitis, B. × multipinna and B. longiaurita were described based on morphological traits; they are phylogenetically intertwined with B. sinensis and fail to form monophyletic groups. To address the unclear phylogenetic relationships within the B. sinensis species complex, RAD sequencing was performed on 65 individuals from five populations. Our integrated analysis of phylogenetic trees, neighbor nets, and genetic structures indicate that the B. sinensis species complex should not be considered as separate species. Moreover, our findings reveal differences in the degree of genetic differentiation among the five populations, ranging from low to moderate, which might be influenced by geographical distance and gene flow. The Fst values also confirmed that genetic differentiation intensifies with increasing geographic distance. Collectively, this study clarifies the complex phylogenetic relationships within the B. sinensis species complex, elucidates the genetic diversity and differentiation across the studied populations, and offers valuable genetic insights that contribute to the broader study of evolutionary relationships and population genetics within the Bolbitis species.
Collapse
Affiliation(s)
- Liyun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yuhan Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
| | - Zengqiang Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Faguo Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Péros JP, Launay A, Peyrière A, Berger G, Roux C, Lacombe T, Boursiquot JM. Species relationships within the genus Vitis based on molecular and morphological data. PLoS One 2023; 18:e0283324. [PMID: 37523393 PMCID: PMC10389703 DOI: 10.1371/journal.pone.0283324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 08/02/2023] Open
Abstract
The grape genus Vitis L. includes the domesticated V. vinifera, which is one of the most important fruit crop, and also close relatives recognized as valuable germplasm resources for improving cultivars. To resolve some standing problems in the species relationships within the Vitis genus we analyzed diversity in a set of 90 accessions comprising most of Vitis species and some putative hybrids. We discovered single nucleotide polymorphisms (SNPs) in SANGER sequences of twelve loci and genotyped accessions at a larger number of SNPs using a previously developed SNP array. Our phylogenic analyses consistently identified: three clades in North America, one in East Asia, and one in Europe corresponding to V. vinifera. Using heterozygosity measurement, haplotype reconstruction and chloroplast markers, we identified the hybrids existing within and between clades. The species relationships were better assessed after discarding these hybrids from analyses. We also studied the relationships between phylogeny and morphological traits and found that several traits significantly correlated with the phylogeny. The American clade that includes important species such as V. riparia and V. rupestris showed a major divergence with all other clades based on both DNA polymorphisms and morphological traits.
Collapse
Affiliation(s)
- Jean-Pierre Péros
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Amandine Launay
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - André Peyrière
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gilles Berger
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Catherine Roux
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Thierry Lacombe
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Jean-Michel Boursiquot
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Talavera A, Nie ZL, Ma ZY, Johnson G, Ickert-Bond SM, Zimmer EA, Wen J. Phylogenomic analyses using a new 1013-gene Vitaceae bait-set support major groups of North American Vitis. Mol Phylogenet Evol 2023:107866. [PMID: 37354923 DOI: 10.1016/j.ympev.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A set of newly designed Vitaceae baits targeting 1013 genes was employed to explore phylogenetic relationships among North American Vitis. Eurasian Vitis taxa including Vitis vinifera were found to be nested within North American Vitis subgenus Vitis. North American Vitis subgenus Vitis can be placed into nine main groups: the Monticola group, the Occidentales group, the Californica group, the Vinifera group (introduced from Eurasia), the Mustangensis group, the Palmata group, the Aestivalis group, the Labrusca group, and the Cinerea group. Strong cytonuclear discordances were detected in North American Vitis, with many species non-monophyletic in the plastid phylogeny, while monophyletic in the nuclear phylogeny. The phylogenomic analyses support recognizing four distinct species in the Vitis cinerea complex in North America: V. cinerea, V. baileyana, V. berlandieri, and V. simpsonii. Such treatment will better serve the conservation of wild Vitis diversity in North America. Yet the evolutionary history of Vitis is highly complex, with the concordance analyses indicating conflicting signals across the phylogeny. Cytonuclear discordances and Analyses using the Species Networks applying Quartets (SNaQ) method support extensive hybridizations in North American Vitis. The results further indicate that plastid genomes alone are insufficient for resolving the evolutionary history of plant groups that have undergone rampant hybridization, like the case in North American Vitis. Nuclear gene data are essential for species delimitation, identification and reconstructing evolutionary relationships; therefore, they are imperative for plant phylogenomic studies.
Collapse
Affiliation(s)
- Alicia Talavera
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA; Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain.
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Zhi-Yao Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000 China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Stefanie M Ickert-Bond
- UA Museum of the North Herbarium and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-6960, USA
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
4
|
Snead AA, Clark RD. The Biological Hierarchy, Time, and Temporal 'Omics in Evolutionary Biology: A Perspective. Integr Comp Biol 2022; 62:1872-1886. [PMID: 36057775 DOI: 10.1093/icb/icac138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sequencing data-genomics, transcriptomics, epigenomics, proteomics, and metabolomics-have revolutionized biological research, enabling a more detailed study of processes, ranging from subcellular to evolutionary, that drive biological organization. These processes, collectively, are responsible for generating patterns of phenotypic variation and can operate over dramatically different timescales (milliseconds to billions of years). While researchers often study phenotypic variation at specific levels of biological organization to isolate processes operating at that particular scale, the varying types of sequence data, or 'omics, can also provide complementary inferences to link molecular and phenotypic variation to produce an integrated view of evolutionary biology, ranging from molecular pathways to speciation. We briefly describe how 'omics has been used across biological levels and then demonstrate the utility of integrating different types of sequencing data across multiple biological levels within the same study to better understand biological phenomena. However, single-time-point studies cannot evaluate the temporal dynamics of these biological processes. Therefore, we put forward temporal 'omics as a framework that can better enable researchers to study the temporal dynamics of target processes. Temporal 'omics is not infallible, as the temporal sampling regime directly impacts inferential ability. Thus, we also discuss the role the temporal sampling regime plays in deriving inferences about the environmental conditions driving biological processes and provide examples that demonstrate the impact of the sampling regime on biological inference. Finally, we forecast the future of temporal 'omics by highlighting current methodological advancements that will enable temporal 'omics to be extended across species and timescales. We extend this discussion to using temporal multi-omics to integrate across the biological hierarchy to evaluate and link the temporal dynamics of processes that generate phenotypic variation.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - René D Clark
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Brillouet JM, Romieu C, Bacilieri R, Nick P, Trias-Blasi A, Maul E, Solymosi K, Teszlák P, Jiang JF, Sun L, Ortolani D, Londo JP, Gutierrez B, Prins B, Reynders M, Van Caekenberghe F, Maghradze D, Marchal C, Sultan A, Thomas JF, Scherberich D, Fulcrand H, Roumeas L, Billerach G, Salimov V, Musayev M, Ejaz Ul Islam Dar M, Peltier JB, Grisoni M. Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and leaves. ANNALS OF BOTANY 2022; 130:159-171. [PMID: 35700109 PMCID: PMC9445598 DOI: 10.1093/aob/mcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.
Collapse
Affiliation(s)
| | | | - Roberto Bacilieri
- INRA, Equipe DAAV, UMR AGAP (Univ. Montpellier, CIRAD, INRAE, SupAgro), Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Molecular Cell Biology, Karlsruhe, Germany
| | | | - Erika Maul
- Julius Kühn-Institut (JKI), Institut für Rebenzüchtung Geilweilerhof, Siebeldingen, Germany
| | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Peter Teszlák
- Department of Viticulture and Technology Development, Research Institute of Viticulture and Oenology, University of Pécs, Pécs, Hungary
| | - Jiang-Fu Jiang
- Zhengzhou Fruit Research Institute, Zhengzhou, Henan, PR China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Zhengzhou, Henan, PR China
| | | | - Jason P Londo
- USDA, Grape Genetics Research Unit, Agricultural Research Service, Geneva, New York, NY, USA
| | - Ben Gutierrez
- USDA, Plant Genetic Resources Unit, Agricultural Research Service, Geneva, New York, NY, USA
| | - Bernard Prins
- USDA, Nat’l Clonal Germplasm Rep – Tree Fruit & Nut Crops & Grapes, University of California, Davis, California, USA
| | | | | | | | - Cecile Marchal
- INRA, Grapevine Biological Resources Center, Experimental Unit of Domaine de Vassal, Marseillan-plage, France
| | - Amir Sultan
- National Herbarium (Stewart Collection), National Agricultural Research Centre, Islamabad, Pakistan
| | | | | | | | | | | | - Vugar Salimov
- Azerbaijani Scientific Research Institute of Viticulture and Winemaking, Baku, Azerbaijan
| | - Mirza Musayev
- Genetic Resources Institute of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | | | | | | |
Collapse
|
6
|
Ji Y, Yang J, Landis JB, Wang S, Jin L, Xie P, Liu H, Yang JB, Yi TS. Genome Skimming Contributes to Clarifying Species Limits in Paris Section Axiparis (Melanthiaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:832034. [PMID: 35444671 PMCID: PMC9014178 DOI: 10.3389/fpls.2022.832034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Paris L. section Axiparis H. Li (Melanthiaceae) is a taxonomically perplexing taxon with considerable confusion regarding species delimitation. Based on the analyses of morphology and geographic distribution of each species currently recognized in the taxon, we propose a revision scheme that reduces the number of species in P. sect. Axiparis from nine to two. To verify this taxonomic proposal, we employed a genome skimming approach to recover the plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) regions of 51 individual plants across the nine described species of P. sect. Axiparis by sampling multiple accessions per species. The species boundaries within P. sect. Axiparis were explored using phylogenetic inference and three different sequence-based species delimitation methods (ABGD, mPTP, and SDP). The mutually reinforcing results indicate that there are two species-level taxonomic units in P. sect. Axiparis (Paris forrestii s.l. and P. vaniotii s.l.) that exhibit morphological uniqueness, non-overlapping distribution, genetic distinctiveness, and potential reproductive isolation, providing strong support to the proposed species delimitation scheme. This study confirms that previous morphology-based taxonomy overemphasized intraspecific and minor morphological differences to delineate species boundaries, therefore resulting in an overestimation of the true species diversity of P. sect. Axiparis. The findings clarify species limits and will facilitate robust taxonomic revision in P. sect. Axiparis.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jacob B. Landis
- Section of Plant Biology and the L. H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lei Jin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pingxuan Xie
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Ma ZY, Wen J, Fu Q, Liu XQ. Vitisshizishanensis, a new species of the grape genus from Hubei province, China. PHYTOKEYS 2021; 184:45-54. [PMID: 34764731 PMCID: PMC8578147 DOI: 10.3897/phytokeys.184.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Vitisshizishanensis (Vitaceae), a new species from Hubei, China, is described and illustrated. It is morphologically similar to V.flexuosa and V.bryoniifolia, but differs in leaf lobing and pubescence. It can be easily distinguished from the two species based on its glabrous or with very sparse arachnoid tomentum on the abaxial mature leaf surface, and its unlobed to 3-7 lobed leaves. A detailed description, along with photographs for the new species, and a table for morphological comparisons with similar Vitis species, are also provided.
Collapse
Affiliation(s)
- Zhi-Yao Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, ChinaNational Museum of Natural HistoryWashington D.C.United States of America
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USAHuazhong Agricultural UniversityWuhanChina
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USAHuazhong Agricultural UniversityWuhanChina
| | - Qiang Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, ChinaNational Museum of Natural HistoryWashington D.C.United States of America
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, ChinaNational Museum of Natural HistoryWashington D.C.United States of America
| |
Collapse
|
8
|
Wen J, Ma ZY. On the recognition of the long neglected Vitis adenoclada Hand.-Mazz. (Vitaceae) from southern China. PHYTOKEYS 2021; 179:29-33. [PMID: 34220210 PMCID: PMC8225591 DOI: 10.3897/phytokeys.179.65519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
This study reports the recognition of Vitis adenoclada Hand.-Mazz. from southern China. The species was not recognized in the Flora Reipublicae Ropularis Sinicicae and Flora of China treatments. Recent field studies and examination of herbarium collections including the type material suggest that Vitis adenoclada is morphologically similar to V. heyneana, in their densely arachnoid tomentose abaxial leaves, yet it can be easily distinguished from the latter by its red-purple glandular hairs on the young branches (vs. glandular hairs absent in V. heyneana) and inflorescences usually subtended by a tendril at the base (vs. only occasionally with a tendril in V. heyneana). Vitis adenoclada may be a species of hybrid origin, with the highly tomentose Vitis heyneana as one of the parental species, and likely the glandular-hair bearing V. davidii as the other parental species. Vitis adenoclada is recorded from southern China in Guangdong, Guangxi, Guizhou, Hunan and Zhejiang provinces.
Collapse
Affiliation(s)
- Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| |
Collapse
|
9
|
Su C, Duan L, Liu P, Liu J, Chang Z, Wen J. Chloroplast phylogenomics and character evolution of eastern Asian Astragalus (Leguminosae): Tackling the phylogenetic structure of the largest genus of flowering plants in Asia. Mol Phylogenet Evol 2020; 156:107025. [PMID: 33271371 DOI: 10.1016/j.ympev.2020.107025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023]
Abstract
Astragalus, as the largest genus of the flowering plants, is well-known for its high species richness and morphological diversity. Previous studies suggested that many of the subgenera of Astragalus are not monophyletic and the phylogenetic relationships within the genus are still poorly known. In this study, we sampled 117 accessions of Astragalus and its close relatives, covering 55 sections of the genus plus 30 outgroup taxa to recover the main clades of eastern Asian Astragalus based on sequences of the whole chloroplast genome and 65 chloroplast CDSs. Astragalus is supported to be monophyletic and it is sister to the Oxytropis + Coluteoid clade. Within Astragalus, we recovered ten clades, and the ten clades differ substantially from Bunge's subgenera. The former segregate genus Astracantha is also monophyletic, but embedded within Astragalus s. str., supporting the merge of the spiny former genus Astracantha with Astragalus. We detected the atpF intron losses in the chloroplast genome of the Oxytropis + Coluteoid clade, i.e., the sister clade to Astragalus. Furthermore, we estimated the ancestral states of the trichome morphology and habit via the Bayesian Binary Method. The medifixed hair type is inferred to have developed at least five times and the annual habit originated at least six times. In addition, Astragalus is estimated to have originated in the mid Miocene (stem age, 16.09 Ma, 95% HPD: 12.46-20.50 Ma). The divergence times of the medifixed hair groups ranged from 4.03 to 0.87 Ma, mostly 2-1 Ma, which are correlated with the estimated phased uplifts of the Qinghai-Tibetan Plateau (QTP). We hypothesize that the uplifts of the QTP, which contributed to aridification in eastern Asia and the adjacent regions, may have accelerated the rapid speciation of Astragalus, especially the xerophilous groups (i.e. the medifixed hair groups).
Collapse
Affiliation(s)
- Chun Su
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
| | - Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peiliang Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jing Liu
- College of Life Sciences, Sichuan Agricultural University, Sichuan, China
| | - Zhaoyang Chang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA.
| |
Collapse
|
10
|
Ma ZY, Nie ZL, Ren C, Liu XQ, Zimmer EA, Wen J. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol Phylogenet Evol 2020; 154:106948. [PMID: 32866616 DOI: 10.1016/j.ympev.2020.106948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
The grape family consists of 16 genera and ca. 950 species. It is best known for the economically important fruit crop - the grape Vitis vinifera. The deep phylogenetic relationships and character evolution of the grape family have attracted the attention of researchers in recent years. We herein reconstruct the phylogenomic relationships within Vitaceae using nuclear and plastid genes based on the Hyb-Seq approach and test the newly proposed classification system of the family. The five tribes of the grape family, including Ampelopsideae, Cayratieae, Cisseae, Parthenocisseae, and Viteae, are each robustly supported by both nuclear and chloroplast genomic data and the backbone relationships are congruent with previous reports. The cupular floral disc (raised above and free from ovary at the upper part) is an ancestral state of Vitaceae, with the inconspicuous floral disc as derived in the tribe Parthenocisseae, and the state of adnate to the ovary as derived in the tribe Viteae. The 5-merous floral pattern was inferred to be the ancestral in Vitaceae, with the 4-merous flowers evolved at least two times in the family. The compound dichasial cyme (cymose with two secondary axes) is ancestral in Vitaceae and the thyrse inflorescence (a combination of racemose and cymose branching) in tribe Viteae is derived. The ribbon-like trichome only evolved once in Vitaceae, as a synapomorphy for the tribe Viteae.
Collapse
Affiliation(s)
- Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA.
| |
Collapse
|