1
|
Bernal-Hernández ME, Beltrán-López RG, Robertson DR, Baldwin CC, Espinoza E, Martínez-Gómez JE, Barraza E, Angulo A, Valdiviezo-Rivera J, Acosta AFG, Domínguez-Domínguez O. Cryptic Diversity in Scorpaenodes xyris (Jordan & Gilbert 1882) (Scorpaeniformes: Scorpaenidae) Throughout the Tropical Eastern Pacific. J Mol Evol 2024; 92:842-860. [PMID: 39550524 DOI: 10.1007/s00239-024-10212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/26/2024] [Indexed: 11/18/2024]
Abstract
The tropical eastern Pacific (TEP) is a biogeographic region with a substantial set of isolated oceanic islands and mainland shoreline habitat barriers, as well as complex oceanographic dynamics due to major ocean currents, upwelling areas, eddies, and thermal instabilities. These characteristics have shaped spatial patterns of biodiversity between and within species of reef and shore fishes of the region, which has a very high rate of endemism. Scorpaenodes xyris, a small ecologically cryptic reef-dwelling scorpionfish, is widely distributed throughout the TEP, including all the mainland reef areas and all the oceanic islands. This wide distribution and its ecological characteristics make this species a good model to study the evolutionary history of this type of reef fish across the breadth of a tropical biogeographical region. Our evaluation of geographic patterns of genetic (mitochondrial and nuclear) variation shows that S. xyris comprises two highly differentiated clades (A and B), one of which contains four independent evolutionary subunits. Clade A includes four sub-clades: 1. The Cortez mainland Province; 2. The Revillagigedo Islands; 3. Clipperton Atoll; and 4. The Galapagos Islands. Clade B, in contrast, comprises a single unit that includes the Mexican and Panamic mainland provinces, plus Cocos Island. This geographical arrangement largely corresponds to previously indicated regionalization of the TEP. Oceanic distances isolating the islands have produced much of that evolutionary pattern, although oceanographic processes likely have also contributed.
Collapse
Affiliation(s)
- Moises Emanuel Bernal-Hernández
- Laboratorio de Biología Acuática, Universidad Michoacana de San Nicolás de Hidalgo, Francisco Javier Mujica S/N, 58030, Morelia, Michoacán, Mexico
- Programa Institucional de Maestría en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Rosa Gabriela Beltrán-López
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Universidad No. 1001, 62209, Cuernavaca, Morelos, Mexico
- Programa Institucional de Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - D Ross Robertson
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Eduardo Espinoza
- Dirección del Parque Nacional Galápagos, Puerto Ayora, Islas Galápagos, Ecuador
| | | | - Enrique Barraza
- Dirección de Ecosistemas y Biodiversidad, Ministerio de Medio Ambiente y Recursos Naturales, Col. y Calle Las Mercedes, San Salvador, El Salvador
| | - Arturo Angulo
- Escuela de Biología, Museo de Zoología, Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), y Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro de Montes de Oca, 11501-2060, San José, Costa Rica
| | | | - Adrian F González Acosta
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional, Pesquerías y Biología Marina, 23096, La Paz, Baja California Sur, Mexico
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Universidad Michoacana de San Nicolás de Hidalgo, Francisco Javier Mujica S/N, 58030, Morelia, Michoacán, Mexico.
- Instituto Nacional de Biodiversidad, Pje. Rumipamba N. 341, Quito, Ecuador.
| |
Collapse
|
2
|
Torres-García RQ, Gaither MR, Robertson DR, Torres-Hernández E, Caselle JE, Durand JD, Angulo A, Espinoza-Herrera E, García-De León FJ, Valdiviezo-Rivera J, Domínguez-Domínguez O. Geographic genetic variation in the Coral Hawkfish, Cirrhitichthys oxycephalus (Cirrhitidae), in relation to biogeographic barriers across the Tropical Indo-Pacific. PeerJ 2024; 12:e18058. [PMID: 39346056 PMCID: PMC11438443 DOI: 10.7717/peerj.18058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/17/2024] [Indexed: 10/01/2024] Open
Abstract
The Tropical Indo-Pacific (TIP) includes about two thirds of the world's tropical oceans and harbors an enormous number of marine species. The distributions of those species within the region is affected by habitat discontinuities and oceanographic features. As well as many smaller ones, the TIP contains seven large recognized biogeographic barriers that separate the Red Sea and Indian Ocean, the Indian from the Pacific Ocean, the central and eastern Pacific, the Hawaiian archipelago, the Marquesas and Easter Islands. We examined the genetic structuring of populations of Cirrhitichthys oxycephalus, a small cryptic species of reef fish, across its geographic range, which spans the longitudinal limits of the TIP. We assessed geographic variation in the mitochondrial cytb gene and the nuclear RAG1 gene, using 166 samples collected in 46 localities from the western to eastern edges of the TIP. Sequences from cytb show three well-structured groups that are separated by large genetic distances (1.58-2.96%): two in the Tropical Eastern Pacific (TEP), one at Clipperton Atoll another occupying the rest of that region and the third that ranges across the remainder of the TIP, from the central Pacific to the Red Sea and South Africa. These results indicate that the ~4,000 km wide Eastern Pacific Barrier between the central and eastern Pacific is an efficient barrier separating the two main groups. Further, the ~950 km of open ocean that isolates Clipperton Atoll from the rest of the TEP is also an effective barrier. Contrary to many other cases, various major and minor barriers from the Central Indo-Pacific to the Red Sea are not effective against dispersal by C. oxycephalus, although this species has not colonized the Hawiian islands and Easter Island. The nuclear gene partially supports the genetic structure evident in cytb, although all haplotypes are geographically mixed.
Collapse
Affiliation(s)
- Rolando Quetzalcoatl Torres-García
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
- Programa Institucional de Maestría en Ciencias Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Michelle R Gaither
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, United States
| | | | - Eloisa Torres-Hernández
- Colección Nacional de Peces, Pabellón Nacional de la Biodiversidad, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, United States
| | | | - Arturo Angulo
- Escuela de Biología, Museo de Zoología/Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), y Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José, San José, Costa Rica
| | - Eduardo Espinoza-Herrera
- Investigación Marina Aplicada, Parque Nacional Galápagos, Puerto Ayora, Isla Santa Cruz, Ecuador
| | - Francisco J García-De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste S. C., La Paz, Baja California Sur, Mexico
| | | | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
- Colección de Peces, Instituto Nacional de Biodiversidad, Quito, Pichincha, Ecuador
| |
Collapse
|
3
|
Simonov E, Lopatina NV, Titov SV, Ivanova AD, Brandler OV, Surin VL, Matrosova VA, Dvilis AE, Oreshkova NV, Kapustina SY, Golenishchev FN, Ermakov OA. Traditional multilocus phylogeny fails to fully resolve Palearctic ground squirrels (Spermophilus) relationships but reveals a new species endemic to West Siberia. Mol Phylogenet Evol 2024; 195:108057. [PMID: 38471598 DOI: 10.1016/j.ympev.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Previous efforts to reconstruct evolutionary history of Palearctic ground squirrels within the genus Spermophilus have primarily relied on a single mitochondrial marker for phylogenetic data. In this study, we present the first phylogeny with comprehensive taxon sampling of Spermophilus via a conventional multilocus approach utilizing five mitochondrial and five nuclear markers. Through application of the multispecies coalescent model, we constructed a species tree revealing four distinct clades that diverged during the Late Miocene. These clades are 1) S. alaschanicus and S. dauricus from East Asia; 2) S. musicus and S. pygmaeus from East Europe and northwestern Central Asia; 3) the subgenus Colobotis found across Central Asia and its adjacent regions and encompassing S. brevicauda, S. erythrogenys, S. fulvus, S. major, S. pallidicauda, S. ralli, S. relictus, S. selevini, and S. vorontsovi sp. nov.; and 4) a Central/Eastern Europe and Asia Minor clade comprising S. citellus, S. taurensis, S. xanthoprymnus, S. suslicus, and S. odessanus. The latter clade lacked strong support owing to uncertainty of taxonomic placement of S. odessanus and S. suslicus. Resolving relationships within the subgenus Colobotis, which radiated rapidly, remains challenging likely because of incomplete lineage sorting and introgressive hybridization. Most of modern Spermophilus species diversified during the Early-Middle Pleistocene (2.2-1.0 million years ago). We propose a revised taxonomic classification for the genus Spermophilus by recognizing 18 species including a newly identified one (S. vorontsovi sp. nov.), which is found only in a limited area in the southeast of West Siberia. Employing genome-wide single-nucleotide polymorphism genotyping, we substantiated the role of the Ob River as a major barrier ensuring robust isolation of this taxon from S. erythrogenys. Despite its inherent limitations, the traditional multilocus approach remains a valuable tool for resolving relationships and can provide important insights into otherwise poorly understood groups. It is imperative to recognize that additional efforts are needed to definitively determine phylogenetic relationships between certain species of Palearctic ground squirrels.
Collapse
Affiliation(s)
- Evgeniy Simonov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Str. 11, Novosibirsk 630091, Russia.
| | - Natalia V Lopatina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Str. 11, Novosibirsk 630091, Russia
| | - Sergey V Titov
- Department of Zoology and Ecology, Penza State University, Krasnaya Str. 40, Penza 440026, Russia
| | - Anastasiya D Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow 119991, Russia
| | - Oleg V Brandler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Vadim L Surin
- National Medical Research Center for Hematology, Novyy Zykovskiy Pr. 4, Moscow 125167, Russia
| | - Vera A Matrosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow 119991, Russia
| | - Alisa E Dvilis
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Str. 11, Novosibirsk 630091, Russia
| | - Nataliya V Oreshkova
- Federal Research Center Krasnoyarsk Science Center, Siberian Branch of Russian Academy of Sciences, Akademgorodok Str. 50, Krasnoyarsk 660036, Russia; Laboratory of Forest Genomics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyy Ave. 79, Krasnoyarsk 660041, Russia; V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Akademgorodok Str. 50/28, Krasnoyarsk 660036, Russia; Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyy Ave. 79, Krasnoyarsk 660041, Russia
| | - Svetlana Yu Kapustina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Fedor N Golenishchev
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Emb. 1, Saint Petersburg 199034, Russia
| | - Oleg A Ermakov
- Department of Zoology and Ecology, Penza State University, Krasnaya Str. 40, Penza 440026, Russia.
| |
Collapse
|
4
|
Sarakinis KG, Reis‐Santos P, Donnellan SC, Ye Q, Earl J, Gillanders BM. Strong philopatry in an estuarine-dependent fish. Ecol Evol 2024; 14:e10989. [PMID: 38500851 PMCID: PMC10945236 DOI: 10.1002/ece3.10989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 03/20/2024] Open
Abstract
Understanding fish movement is critical in determining the spatial scales in which to appropriately manage wild populations. Genetic markers provide a natural tagging approach to assess the degree of gene flow and population connectivity across a species distribution. We investigated the genetic structure of black bream Acanthopagrus butcheri across its entire distribution range in Australia, as well as regional scale gene flow across south-eastern Australia by undertaking a comprehensive analysis of the populations in estuaries across the region. We applied genome-wide sampling of single-nucleotide polymorphism (SNP) markers generated from restriction site-associated DNA sequencing. Genetic structure and potential gene flow was assessed using principal component analyses and admixture analyses (STRUCTURE). Using 33,493 SNPs, we detected broad scale genetic structuring, with limited gene flow among regional clusters (i.e. Western Australia, South Australia and western Victoria; and eastern Victoria, Tasmania and New South Wales). This is likely the result of unsuitable habitats, strong ocean currents (e.g. the Leeuwin Current and the East Australian Current), large water bodies (e.g. Bass Strait) and known biogeographical provinces across the continent. Local-scale genetic structuring was also identified across the south-eastern Australian estuaries sampled, reflecting that the coexistence of both migratory and resident individuals within populations (i.e. partial migration), and the movement of fish into coastal waters, still results in strong philopatry across the region. Instances of movement among estuaries at this spatial scale were primarily found between adjacent estuaries and were likely attributed to lone migrants utilising inshore coastal currents for movement beyond nearby habitats. Targeting SNP markers in A. butcheri at this continental scale highlighted how neither spatial proximity of estuaries nor black bream's ability to move into coastal waters reflects increased gene flow. Overall, our findings highlight the importance of location-specific management.
Collapse
Affiliation(s)
- Koster G. Sarakinis
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Patrick Reis‐Santos
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Qifeng Ye
- South Australian Research and Development Institute Aquatic and Livestock SciencesAdelaideSouth AustraliaAustralia
| | - Jason Earl
- South Australian Research and Development Institute Aquatic and Livestock SciencesAdelaideSouth AustraliaAustralia
| | - Bronwyn M. Gillanders
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
Douglas J, Bouckaert R. Quantitatively defining species boundaries with more efficiency and more biological realism. Commun Biol 2022; 5:755. [PMID: 35902726 PMCID: PMC9334598 DOI: 10.1038/s42003-022-03723-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
We introduce a widely applicable species delimitation method based on the multispecies coalescent model that is more efficient and more biologically realistic than existing methods. We extend a threshold-based method to allow the ancestral speciation rate to vary through time as a smooth piecewise function. Furthermore, we introduce the cutting-edge proposal kernels of StarBeast3 to this model, thus enabling rapid species delimitation on large molecular datasets and allowing the use of relaxed molecular clock models. We validate these methods with genomic sequence data and SNP data, and show they are more efficient than existing methods at achieving parameter convergence during Bayesian MCMC. Lastly, we apply these methods to two datasets (Hemidactylus and Galagidae) and find inconsistencies with the published literature. Our methods are powerful for rapid quantitative testing of species boundaries in large multilocus datasets and are implemented as an open source BEAST 2 package called SPEEDEMON. Introducing SPEEDEMON, a package for BEAST 2 that better defines species boundaries based on molecular data demonstrated on gecko and loris datasets.
Collapse
Affiliation(s)
- Jordan Douglas
- School of Computer Science, The University of Auckland, Auckland, New Zealand.
| | - Remco Bouckaert
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Phylogeography and evolutionary history of the Panamic Clingfish Gobiesox adustus in the Tropical Eastern Pacific. Mol Phylogenet Evol 2022; 173:107496. [PMID: 35569809 DOI: 10.1016/j.ympev.2022.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/26/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
Abstract
The Panamic Clingfish Gobiesox adustus is widely distributed in the Tropical Eastern Pacific (TEP), from the central Gulf of California, Mexico to Ecuador, including the oceanic Revillagigedo Archipelago, and Isla del Coco. This cryptobenthic species is restricted to very shallow rocky-reef habitats. Here, we used one mitochondrial and three nuclear DNA markers from 155 individuals collected across the distribution range of the species in order to evaluate if geographically structured populations exist and to elucidate its evolutionary history. Phylogenetic analyses recovered a monophyletic group, with four well-supported, allopatric subgroups. Each subgroup corresponded to one of the following well-known biogeographic regions/provinces: 1) the Revillagigedo Archipelago, 2) the Cortez + Mexican provinces (Mexico), 3) the Panamic province (from El Salvador to Ecuador), and 4) Isla del Coco. A molecular-clock analysis showed a mean date for the divergence between clade I (the Revillagigedos and Cortez + Mexican provinces) and clade II (Panamic province and Isla del Coco) in the Pliocene, at ca. 5.33 Mya. Within clade I, the segregation between the Revillagigedos and Cortez + Mexican province populations was dated at ca. 1.18 Mya, during the Pleistocene. Within clade II, the segregation between samples of Isla del Coco and the Panamic province samples was dated at ca. 0.77 Mya, during the Pleistocene. The species tree, Bayesian species delimitation tests (BPP and STACEY), the ΦST, AMOVA, and the substantial genetic distances that exist between those four subgroups, indicate that they are independent evolutionary units. These cladogenetic events seem to be related to habitat discontinuities, and oceanographic and geological processes that produce barriers to gene flow for G. adustus, effects of which are enhanced by the intrinsic ecological characteristics of this species.
Collapse
|