1
|
Abbo T, Stickrod MA, Krohn A, Parker VT, Vasey MC, Waycott W, Litt A. Investigating a hybrid mixed population leads to recognizing a new species of Arctostaphylos (Ericaceae). PHYTOKEYS 2025; 251:119-142. [PMID: 39867480 PMCID: PMC11758095 DOI: 10.3897/phytokeys.251.139172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025]
Abstract
While investigating the potential for Arctostaphylos species to hybridize in the mixed populations of Point Sal and Burton Mesa in Santa Barbara County, California, we discovered that Arctostaphylos from the Nipomo Mesa (San Luis Obispo County), formerly considered a northern population of A.rudis, are genetically and morphologically distinct. We name this new taxon A.nipumu after the ytt (Northern Chumash language) word for the Nipomo Mesa region. For morphological and molecular analyses, we sampled 54 plants, focusing on A.purissima, A.rudis, and A.crustacea from multiple species and comparative single species populations. Parametric and nonparametric clustering analyses (STRUCTURE and PCA) of ddRADseq data show that Arctostaphylos from the Nipomo Mesa segregate from all other samples in the dataset. In mixed populations A.purissima and A.crustacea samples cluster with samples from other unmixed populations of the same species but A.rudis samples form two distinct clusters. One is composed of the mixed populations in Santa Barbara County, and the other consists of the Nipomo Mesa population. Additionally, the Santa Barbara County A.rudis samples are admixed in STRUCTURE analysis unlike the samples from the Nipomo Mesa. A principal component analysis of eight morphological characters shows that A.rudis individuals from Santa Barbara County tend to be phenotypically variable, occurring in a wide morphological cluster that overlaps with the tight clusters formed by A.purissima, A.crustacea, and Arctostaphylos from the Nipomo Mesa. Based on this evidence we describe the Nipomo Mesapopulation as a new species of Arctostaphylos. Given its limited and fragmented distribution we believe that A.nipumu is of critical conservation concern.
Collapse
Affiliation(s)
- Tito Abbo
- University of California, Riverside, USAUniversity of CaliforniaRiversideUnited States of America
| | - Morgan A. Stickrod
- San Francisco State University, San Francisco, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - Alexander Krohn
- Tangled Bank Conservation, Asheville, USATangled Bank ConservationAshevilleUnited States of America
| | - V. Thomas Parker
- San Francisco State University, San Francisco, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - Michael C. Vasey
- San Francisco State University, San Francisco, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - William Waycott
- Nipomo Native Seed, Nipomo, USANipomo Native SeedNipomoUnited States of America
| | - Amy Litt
- University of California, Riverside, USAUniversity of CaliforniaRiversideUnited States of America
| |
Collapse
|
2
|
Yañez A, Kinosian SP, Ponce MM, Gutierrez DG, Schwartsburd PB, Sundue M, Wolf PG. Striking genetic homogeneity in the widespread South American bracken. AMERICAN JOURNAL OF BOTANY 2024; 111:e16374. [PMID: 39001581 DOI: 10.1002/ajb2.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 07/24/2024]
Abstract
PREMISE Bracken (Pteridium, Dennstaedtiaceae) is a cosmopolitan genus of aggressive disturbance colonizers that are toxic to agricultural livestock. The taxonomy of Pteridium has been treated in multiple schemes, ranging from one to six species worldwide, with numerous subspecies and varieties. Recent work has focused on the worldwide distribution and systematics of the bracken fern, but South America has been poorly represented. We present the first continent-wide sampling and analysis of Pteridium esculentum, a Southern Hemisphere diploid species. METHODS Within South America, P. esculentum has several morphotypes, distinguished into subspecies by variation in indument and lamina architecture. We used double digest restriction site-associated DNA sequencing (ddRADSeq) to assess the phylogenetic relationships of P. esculentum subspecies. RESULTS We found a striking genetic homogeneity in the species, being able to support only two morphotypes from molecular data: P. e. arachnoideum and P. e. campestre. We had high confidence for shallow and deep phylogenetic relationships, but less support for relationships among crown groups. CONCLUSIONS We describe an east-west geographic pattern that would explain the relationships between populations; and, in contrast to previous studies, we detected differences with P. esculentum from Australia. These results will lay the foundations for studying variations in this species' behavior as a weed, as well as its impact on the production of agricultural livestock in South America.
Collapse
Affiliation(s)
- Agustina Yañez
- División Plantas Vasculares, Museo Argentino de Ciencias Naturales (MACN-CONICET), Av. Ángel Gallardo 740, Ciudad de Buenos Aires, C1405DJR, Argentina
| | - Sylvia P Kinosian
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, Arizona, USA
| | - M Mónica Ponce
- Instituto de Botánica Darwinion (IBODA-CONICET), Labardén 200, Casilla de Correo 22, San Isidro, B1642HYD, Buenos Aires, Argentina
| | - Diego G Gutierrez
- División Plantas Vasculares, Museo Argentino de Ciencias Naturales (MACN-CONICET), Av. Ángel Gallardo 740, Ciudad de Buenos Aires, C1405DJR, Argentina
| | - Pedro B Schwartsburd
- Laboratory of Systematics and Evolution of Plants, Department of Plant Biology, Federal University of Viçosa, Av. Peter Henry Rolfs s.n., Viçosa, 36570-900, MG, Brazil
| | - Michael Sundue
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, Scotland, UK
- The Pringle Herbarium, Department of Plant Biology, University of Vermont, Burlington, 111 Jeffords Hall, 63 Carrigan Drive, Vermont, 05405, USA
- Botanical Research, Institute of Texas, 1700 University Drive, Fort Worth, 76102, TX, USA
| | - Paul G Wolf
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, 35899, Alabama, USA
| |
Collapse
|
3
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
4
|
Garner AG, Goulet-Scott BE, Hopkins R. Phylogenomic analyses re-examine the evolution of reinforcement and hypothesized hybrid speciation in Phlox wildflowers. THE NEW PHYTOLOGIST 2024; 243:451-465. [PMID: 38764373 DOI: 10.1111/nph.19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/22/2024] [Indexed: 05/21/2024]
Abstract
The tree of life is riddled with reticulate evolutionary histories, and some clades, such as the eastern standing Phlox, appear to be hotspots of hybridization. In this group, there are two cases of reinforcement and nine hypothesized hybrid species. Given their historical importance in our understanding of plant speciation, the relationships between these taxa and the role of hybridization in their diversification require genomic validation. Using phylogenomic analyses, we resolve the evolutionary relationships of the eastern standing Phlox and evaluate hypotheses about whether and how hybridization and gene flow played a role in their diversification. Our results provide novel resolution of the phylogenetic relationships in this group, including paraphyly across some taxa. We identify gene flow during one case of reinforcement and find genomic support for a hybrid lineage underlying one of the five hypothesized homoploid hybrid speciation events. Additionally, we estimate the ancestries of four allotetraploid hybrid species. Our results are consistent with hybridization contributing to diverse evolutionary outcomes within this group; although, not as extensively as previously hypothesized. This study demonstrates the importance of phylogenomics in evaluating hypothesized evolutionary histories of non-model systems and adds to the growing support of interspecific genetic exchange in the generation of biodiversity.
Collapse
Affiliation(s)
- Austin G Garner
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| | - Benjamin E Goulet-Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
5
|
Wickell D, Landis J, Zimmer E, Li FW. Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a 'diploids-first' approach to conservation. ANNALS OF BOTANY 2024; 133:261-272. [PMID: 37967308 PMCID: PMC11005780 DOI: 10.1093/aob/mcad180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND AND AIMS Allopolyploidy is an important driver of diversification and a key contributor to genetic novelty across the tree of life. However, many studies have questioned the importance of extant polyploid lineages, suggesting that the vast majority may constitute evolutionary 'dead ends'. This has important implications for conservation efforts where polyploids and diploid progenitors often compete for wildlife management resources. Isoetes appalachiana is an allotetraploid that is broadly distributed throughout the eastern USA alongside its diploid progenitors, I. valida and I. engelmannii. As such, this species complex provides an excellent opportunity to investigate the processes that underpin the formation and survival of allopolyploid lineages. METHODS Here we utilized RADseq and whole-chloroplast sequencing to unravel the demographic and evolutionary history of hybridization in this widespread species complex. We developed a modified protocol for phasing RADseq loci from an allopolyploid in order to examine each progenitor's genetic contribution independently in a phylogenetic context. Additionally, we conducted population-level analyses to examine genetic diversity and evidence of gene flow within species. KEY RESULTS Isoetes appalachiana is the product of multiple phylogenetic origins, suggesting that formation and establishment of allopolyploids are common in this group. Hybridization appears to be unidirectional, with I. engelmannii consistently being the maternal progenitor. Additionally, we find that polyploid lineages are genetically isolated, rarely if ever experiencing gene flow between geographically distinct populations. CONCLUSIONS Allopolyploid lineages of I. appalachiana appear to form frequently and experience a high degree of genetic isolation following formation. Thus, our results appear to corroborate the hypothesis that the vast majority of recently formed polyploids may represent evolutionary dead ends. However, this does not necessarily lessen the evolutionary importance or ecological impact of polyploidy per se. Accordingly, we propose a conservation strategy that prioritizes diploid taxa, thus preserving downstream processes that recurrently generate allopolyploid diversity.
Collapse
Affiliation(s)
- David Wickell
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jacob Landis
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Elizabeth Zimmer
- National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
| | - Fay-Wei Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Kim H, Choi B, Lee C, Paik JH, Jang CG, Weiss-Schneeweiss H, Jang TS. Does the evolution of micromorphology accompany chromosomal changes on dysploid and polyploid levels in the Barnardia japonica complex (Hyacinthaceae)? BMC PLANT BIOLOGY 2023; 23:485. [PMID: 37817118 PMCID: PMC10565974 DOI: 10.1186/s12870-023-04456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Chromosome number and genome size changes via dysploidy and polyploidy accompany plant diversification and speciation. Such changes often impact also morphological characters. An excellent system to address the questions of how extensive and structured chromosomal changes within one species complex affect the phenotype is the monocot species complex of Barnardia japonica. This taxon contains two well established and distinct diploid cytotypes differing in base chromosome numbers (AA: x = 8, BB: x = 9) and their allopolyploid derivatives on several ploidy levels (from 3x to 6x). This extensive and structured genomic variation, however, is not mirrored by gross morphological differentiation. RESULTS The current study aims to analyze the correlations between the changes of chromosome numbers and genome sizes with palynological and leaf micromorphological characters in diploids and selected allopolyploids of the B. japonica complex. The chromosome numbers varied from 2n = 16 and 18 (2n = 25 with the presence of supernumerary B chromosomes), and from 2n = 26 to 51 in polyploids on four different ploidy levels (3x, 4x, 5x, and 6x). Despite additive chromosome numbers compared to diploid parental cytotypes, all polyploid cytotypes have experienced genome downsizing. Analyses of leaf micromorphological characters did not reveal any diagnostic traits that could be specifically assigned to individual cytotypes. The variation of pollen grain sizes correlated positively with ploidy levels. CONCLUSIONS This study clearly demonstrates that karyotype and genome size differentiation does not have to be correlated with morphological differentiation of cytotypes.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chang-Gee Jang
- Department of Biology Education, Kongju National University, Gongju, 32588, Republic of Korea
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria.
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Yang F, Ge J, Guo Y, Olmstead R, Sun W. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. ANNALS OF BOTANY 2023; 132:15-28. [PMID: 36722368 PMCID: PMC10550280 DOI: 10.1093/aob/mcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.
Collapse
Affiliation(s)
- Fengmao Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Jia Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195, USA
| | - Weibang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| |
Collapse
|
8
|
Schafran P, Li FW, Rothfels CJ. PURC Provides Improved Sequence Inference for Polyploid Phylogenetics and Other Manifestations of the Multiple-Copy Problem. Methods Mol Biol 2023; 2545:189-206. [PMID: 36720814 DOI: 10.1007/978-1-0716-2561-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inferring the true biological sequences from amplicon mixtures remains a difficult bioinformatics problem. The traditional approach is to cluster sequencing reads by similarity thresholds and treat the consensus sequence of each cluster as an "operational taxonomic unit" (OTU). Recently, this approach has been improved by model-based methods that correct PCR and sequencing errors in order to infer "amplicon sequence variants" (ASVs). To date, ASV approaches have been used primarily in metagenomics, but they are also useful for determining homeologs in polyploid organisms. To facilitate the usage of ASV methods among polyploidy researchers, we incorporated ASV inference alongside OTU clustering in PURC v2.0, a major update to PURC (Pipeline for Untangling Reticulate Complexes). In addition, PURC v2.0 features faster demultiplexing than the original version and has been updated to be compatible with Python 3. In this chapter we present results indicating that using the ASV approach is more likely to infer the correct biological sequences in comparison to the earlier OTU-based PURC and describe how to prepare sequencing data, run PURC v2.0 under several different modes, and interpret the output.
Collapse
Affiliation(s)
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Extensive hybridization in Ranunculus section Batrachium (Ranunculaceae) in rivers of two postglacial landscapes of East Europe. Sci Rep 2022; 12:12088. [PMID: 35840607 PMCID: PMC9287324 DOI: 10.1038/s41598-022-16224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
We demonstrate a wide distribution and abundance of hybrids between the river species Ranunculus aquatilis, R. fluitans and R. kauffmannii with the still water species R. circinatus (Batrachium, Ranunculaceae) in rivers of two postglacial landscapes of East Europe, i.e., Lithuania and Central European Russia. The Batrachium species and hybrid diversity is higher in the rivers of Lithuania (4 species and 3 hybrids vs. 2 and 1) and represented mainly by western R. aquatilis, R. fluitans and their hybrids whereas in Central European Russia, the East European species R. kauffmannii and its hybrid are the only dominant forms. Hybrids make up about 3/4 of the studied individuals found in 3/4 of the studied river localities in Lithuania and 1/3 of the individuals found in 1/3 of the localities in Central European Russia. Such extensive hybridization in river Batrachium may have arisen due to the specificity of rivers as open-type ecosystems. It may have been intensified by the transformation of river ecosystems by human activities and the postglacial character of the studied landscapes combined with ongoing climate change. Almost all hybrids of R. aquatilis, R. fluitans and R. kauffmannii originated from unidirectional crossings in which R. circinatus acted as a pollen donor. Such crossings could be driven by higher frequency and abundance of R. circinatus populations as well as by some biological mechanisms. Two hybrids, R. circinatus × R. fluitans and R. circinatus × R. kauffmannii, were formally described as R. × redundans and R. × absconditus. We found a hybrid which most likely originated from additional crossing between R. aquatilis and R. circinatus × R. fluitans.
Collapse
|
10
|
Bog M, Inoue M, Klahr A, Fuchs J, Ivanenko Y, Hori K, Horn K, Wilfried Bennert H, Schnittler M. Club-mosses (Diphasiastrum, Lycopodiaceae) from the Far East - Introgression and possible cryptic speciation. Mol Phylogenet Evol 2022; 175:107587. [PMID: 35830913 DOI: 10.1016/j.ympev.2022.107587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Hybridization occurs often in the genus Diphasiastrum (Lycopodiaceae), which corroborates reports for the two other recognized lycophyte families, Isoëtaceae and Selaginellaceae. Here we investigate the case of D. alpinum and D. sitchense from the Russian Far East (Kamchatka). Their hybrid, D. × takedae, was morphologically recognizable in 16 out of 22 accessions showing molecular signatures of hybridization; the remaining accessions displayed the morphology of either D. alpinum (3) or D. sitchense (3). We sequenced markers for chloroplast microsatellites (cp, 175 accessions from Kamchatka) and for the two nuclear markers RPB and LFY (175 and 152 accessions). A selection of 42 accessions, including all hybrid accessions, was analysed via genotyping by sequencing (GBS). We found multiple, but apparently uniparental hybridization, clearly characterized by a deviating group of haplotypes for D. sitchense and all hybrids. All accessions showing molecular signatures of hybridization in nuclear markers revealed the parental haplotype of D. sitchense, however only the LFY marker differentiated between the parent species. GBS, including 69,819 quality-filtered single nucleotid polymorphisms, unambiguously identified the hybrids and revealed introgression to occur. Most of the hybrids were F1, but three turned out to be backcrosses with D. alpinum (one) and with D. sitchense (two). These observations are in contrast to prior findings on three European species and their intermediates where all three hybrids turned out to be independent F1 crosses without evidence of recent backcrossing. In this study, backcrossing was detected, which indicates a limited fertility of the hybrid taxon D. × takedae. A comparison of accessions of Kamchatkian D. alpinum with plants from Europe indicated possible cryptic speciation. Accessions from the Far East had (i) a lower DNA content (7.0 vs. 7.5 pg/2C), (ii) different prevailing cp haplotypes, and (iii) RPB genotypes, and (iv) a clearly different SNP pattern in GBS. Diphasiastrum sitchense and the similar D. nikoënse, for the latter additional accessions from Japan were investigated, appeared as forms of one diverse species, sharing genotypes in both nuclear markers, although chloroplast haplotypes and DNA content show slight variations.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany.
| | - Maho Inoue
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany
| | - Anja Klahr
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany
| | - Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Yuri Ivanenko
- Saint Petersburg State University, Universitetskaya nab, 7/9, 199034 St. Petersburg, Russia
| | - Kiyotaka Hori
- The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi City, Kochi Prefecture 781-8125, Japan
| | - Karsten Horn
- Büro für angewandte Geobotanik und Landschaftsökologie (BaGL), Frankenstraße 2, D-91077 Dormitz, Germany
| | - H Wilfried Bennert
- Evolution and Biodiversity of Plants, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany
| |
Collapse
|
11
|
Windham MD, Huiet L, Metzgar JS, Ranker TA, Yatskievych G, Haufler CH, Pryer KM. Once more unto the breach, dear friends: Resolving the origins and relationships of the Pellaea wrightiana hybrid complex. AMERICAN JOURNAL OF BOTANY 2022; 109:821-850. [PMID: 35568966 DOI: 10.1002/ajb2.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The taxonomic status of Wright's cliff brake fern, Pellaea wrightiana, has been in dispute ever since it was first described by Hooker in 1858. Previously published evidence suggested that this "taxon" may represent a polyploid complex rather than a single discrete species, a hypothesis tested here using a multifaceted analytical approach. METHODS Data derived from cytogenetics, spore analyses, leaf morphometrics, enzyme electrophoresis, and phylogenetic analyses of plastid and nuclear DNA sequences are used to elucidate the origin, relationships, and taxonomic circumscription of P. wrightiana. RESULTS Plants traditionally assigned to this taxon represent three distinct polyploids. The most widespread, P. wrightiana, is a fertile allotetraploid that arose through hybridization between two divergent diploid species, P. truncata and P. ternifolia. Sterile triploids commonly identified as P. wrightiana, were found to be backcross hybrids between this fertile tetraploid and diploid P. truncata. Relatively common across Arizona and New Mexico, they are here assigned to P. ×wagneri hyb. nov. In addition, occasional sterile tetraploid plants assigned to P. wrightiana are shown here to be hybrids between the fertile allotetraploid and the tetraploid P. ternifolia subsp. arizonica. These tetraploid hybrids originated independently in two regions of parental sympatry (southern Arizona and west Texas) and are here assigned to P. ×gooddingii hyb. nov. CONCLUSIONS Weaving together data from a diversity of taxonomic approaches, we show that plants identified as P. wrightiana represent three morphologically distinguishable polyploids that have arisen through repeated hybridization events involving the divergent sexual taxa P. ternifolia and P. truncata.
Collapse
Affiliation(s)
| | - Layne Huiet
- Department of Biology, Duke University, Durham, 27708, NC, USA
| | - Jordan S Metzgar
- Department of Biological Sciences, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Tom A Ranker
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, 96822, HI, USA
| | - George Yatskievych
- Billie L. Turner Plant Resources Center, University of Texas, Austin, 78712, TX, USA
| | - Christopher H Haufler
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, 66045, KS, USA
| | | |
Collapse
|
12
|
Larsén E, Wikström N, Khodabandeh A, Rydin C. Phylogeny of Merlin's grass (Isoetaceae): revealing an "Amborella syndrome" and the importance of geographic distribution for understanding current and historical diversity. BMC Ecol Evol 2022; 22:32. [PMID: 35296231 PMCID: PMC8928685 DOI: 10.1186/s12862-022-01988-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Merlin’s grass (Isoetes, Isoetaceae, Lycopsida), is the extant remnant of the isoetalean wood-producing lycopsids that originated during the Paleozoic, possibly in aquatic or boggy habitats. Modern day species are aquatic, semi-aquatic or terrestrial and occur almost worldwide. They display little morphological variation; the lobed corm has helically arranged leaves with internal air channels and basal sporangia. Genetic variation has also proven limited, which has hampered phylogenetic inference. We investigate evolutionary relationships in Isoetes, using molecular data and an extended sample of species compared to previous work, adding species that have never before been included in a phylogenetic study. Results Our results reveal an unexpected discovery of an “Amborella syndrome” in Isoetaceae: a single poorly known species is sister to the remaining family. The species, Isoetes wormaldii, is a rare endemic to the Eastern Cape of South Africa. Its leaves are flattened with a rounded point, which sharply contrasts with the awl-shaped leaves of most other species of Isoetes. The remaining species of Isoetes are resolved in five major clades, also indicated in previous work. While the phylogeny shows geographic structure, the patterns are complex. For example, tropical-southern African species occur in at least five clades, and Indian, Australian and Mediterranean species in at least three clades each. Conclusion The evolutionary and biogeographical history of Isoetes is not easily explained, and may conceivably include ample extinction and a mixture of ancient and more recent processes. Previously shown difficulties with node age estimation increase the problem. The here demonstrated sister-relationship between the phylogenetically, morphologically and genetically distinct Isoetes wormaldii and the remaining family appears to bridge the morphological gap between Isoetes and its extinct relatives, although further studies are needed. Moreover, it shortens the branch length to its living sister genus Selaginella, and may enhance node age estimation in future studies. Isoetes wormaldii is critically endangered, known only from one (to a few) minor populations. Immediate actions need to be taken if we want to prevent this unique species from going extinct. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01988-w.
Collapse
Affiliation(s)
- Eva Larsén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.,Bergius Foundation, The Royal Academy of Sciences, Box 50005, 104 05, Stockholm, Sweden
| | - Anbar Khodabandeh
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.,Bergius Foundation, The Royal Academy of Sciences, Box 50005, 104 05, Stockholm, Sweden
| | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.,Bergius Foundation, The Royal Academy of Sciences, Box 50005, 104 05, Stockholm, Sweden
| |
Collapse
|