1
|
Zhang QY, He XJ, Xie YZ, Zhou LP, Meng X, Kang J, Luo CY, Wang YN, Li ZH, Guan TX. Genome-Wide Identification, Phylogeny, and Abiotic Stress Response Analysis of OSCA Family Genes in the Alpine Medicinal Herb Notopterygium franchetii. Int J Mol Sci 2025; 26:5043. [PMID: 40507853 PMCID: PMC12155337 DOI: 10.3390/ijms26115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/30/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Hyperosmolality-gated calcium-permeable cation channel protein denoted as OSCA, which are mechanosensitive pore-forming ion channels, play a pivotal role in plants' responses to abiotic stressors. Notopterygium franchetii, an endemic perennial plant species distributed in the Qinghai-Tibetan Plateau and its adjacent high-altitude regions, is likely to have undergone adaptive evolution in response to extreme abiotic stress conditions. The current study was conducted to characterize the genome-wide characteristics and phylogenetic evolution of the OSCA gene family in N. franchetii and identify its response patterns to drought and high-temperature stresses. We examined the gene family's structural features, phylogenetic relationships, and response to abiotic stresses. The N. franchetii genome had 29 OSCA gene family members on 11 chromosomes. Subcellular localization showed they were mainly in the cell membrane, and a promoter cis-acting element study found that the OSCA gene family contained methyl jasmonate, abscisic acid, and various adversity and hormone response components. Under drought stress, most of the NofOSCAs genes showed a tendency to increase over time in the roots of N. franchetii, while in the aboveground parts, most of the NofOSCAs genes showed a tendency to increase and then decrease. The expression of different NofOSCAs genes in N. franchetii also showed alternating changes under high-temperature stress. Nine members of NofOSCAs were found to be linked to the PPI network, and these members were involved in membrane structure, transmembrane transport, and ion channel function. Our analysis of differential expression revealed that the expression of OSCA genes differed among the different N. franchetii tissues, with the roots exhibiting the highest average expression level, and many genes displayed tissue-specific high expression patterns. These results provided novel insights into the phylogenetic evolution and abiotic stress response mechanisms in the high-altitude medicinal herb N. franchetii.
Collapse
Affiliation(s)
- Qi-Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Xiao-Jing He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Yan-Ze Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Li-Ping Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Xin Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Jia Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Cai-Yun Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Yi-Nuo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.-Y.Z.); (X.-J.H.); (C.-Y.L.)
| | - Tian-Xia Guan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Life Sciences and Engineering, Hexi University, Zhangye 734000, China
| |
Collapse
|
2
|
Wu X, He X, Wang X, Liu P, Ai S, Liu X, Li Z, Wang X. Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species. Int J Mol Sci 2025; 26:519. [PMID: 39859232 PMCID: PMC11765234 DOI: 10.3390/ijms26020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the LEA gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of LEA family genes in Notopterygium species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions. The gene family identification analysis showed that 23, 20, and 20 LEA genes were identified in three Notopterygium species, N. franchetii, N. incisum, and N. forrestii, respectively. All of these genes can be classified into six LEA subfamilies: LEA_1, LEA_2, LEA_5, LEA_6, DHN (Dehydrin), and SMP (seed maturation protein). The LEA proteins in the three Notopterygium species exhibited significant variations in the number of amino acids, physical and chemical properties, subcellular localization, and secondary structure characteristics, primarily demonstrating high hydrophilicity, different stability, and specific subcellular distribution patterns. Meanwhile, we found that the members of the same LEA subfamily shared similar exon-intron structures and conserved motifs. Interestingly, the chromosome distributions of LEA genes in Notopterygium species were scattered. The results of the collinearity analysis indicate that the expansion of the LEA gene family is primarily driven by gene duplication. A Ka/Ks analysis showed that paralogous gene pairs were under negative selection in Notopterygium species. A promoter cis-acting element analysis showed that most LEA genes possessed multiple cis-elements connected to plant growth and development, stress response, and plant hormone signal transduction. An expression pattern analysis demonstrated the species-specific and tissue-specific expression of NinLEAs. Experiments on abiotic stress responses indicated that the NinLEAs play a crucial role in the response to high-temperature and drought stresses in N. franchetii leaves and roots. These results provide novel insights for further understanding the functions of the LEA gene family in the alpine cold-tolerant Notopterygium species and also offer a scientific basis for in-depth research on the abiotic stress response mechanisms and stress-resistant breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (X.W.); (X.H.); (X.W.); (P.L.); (S.A.); (X.L.)
| | - Xiaojuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (X.W.); (X.H.); (X.W.); (P.L.); (S.A.); (X.L.)
| |
Collapse
|
3
|
Tang Z, Zheng R, Chen P, Li L. Phytochemistry and Biological Profile of the Chinese Endemic Herb Genus Notopterygium. Molecules 2024; 29:3252. [PMID: 39064831 PMCID: PMC11278698 DOI: 10.3390/molecules29143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Notopterygium, a plant genus belonging to the Apiaceae family, is utilized in traditional Chinese medicine for its medicinal properties. Specifically, the roots and rhizomes of these plants are employed in phytotherapy to alleviate inflammatory conditions and headaches. This review provides a concise overview of the existing information regarding the botanical description, phytochemistry, pharmacology, and molecular mechanisms of the two Notopterygium species: Notopterygium incisum and N. franchetii. More than 500 distinct compounds have been derived from these plants, with the root being the primary source. These components include volatile oils, coumarins, enynes, sesquiterpenes, organic acids and esters, flavonoids, and various other compounds. Research suggests that Notopterygium incisum and N. franchetii exhibit a diverse array of pharmacological effects, encompassing antipyretic, analgesic, anti-inflammatory, antiarrhythmic, anticoagulant, antibacterial, antioxidant, and anticancer properties on various organs such as the brain, heart, digestive system, and respiratory system. Building activity screening models based on the pharmacological effects of Notopterygium species, as well as discovering and studying the pharmacological mechanisms of novel active ingredients, will constitute the primary development focus of Notopterygium medicinal research in the future.
Collapse
Affiliation(s)
| | | | | | - Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.T.); (R.Z.); (P.C.)
| |
Collapse
|
4
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
5
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|