1
|
Lian X, Zhao X, Zhong J, Zhang C, Chu Y, Wang Y, Lu S, Wang Z. A New HEK293 Cell with CR2 Region of E1A Gene Deletion Prevents the Emergence of Replication-Competent Adenovirus. Cancers (Basel) 2023; 15:5713. [PMID: 38136259 PMCID: PMC10742158 DOI: 10.3390/cancers15245713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
PURPOSE To eliminate the contaminants of Replication-Competent Adenovirus (RCA) during high titer recombinant oncolytic adenovirus production. METHODS At first, we detected E1A copy numbers of different sources of 293 cells using Q-PCR, and we screened a subclone JH293-C21 of the JH293 cell line (purchased from ATCC) with lower early region 1A (E1A) copy numbers and higher adenovirus production ability. Then, we deleted the conserved region (CR)2 of the E1A gene in this subclone using the CRISPR-Cas9 system and obtained a stable cell clone JH293-C21-C14 with lower E1A expression, but the RCA formation had no significant reduction. Then, we further deleted the CR2 of JH293-C21-C14 cells with the CRISPR-Cas9 system and obtained a strain of cells named JH293-C21-C14-C28. Finally, we detected the capacity for cell proliferation, adenovirus production, and RCA formation in the production of recombinant adenovirus. RESULTS The JH293-C21-C14-C28 cells had a similar cell proliferation ability and human adenovirus production as JH293-C21 cells. Most importantly, RCA production in JH293-C21-C14-C28 cells was lower than in JH293-C21 cells. CONCLUSION Human adenovirus producer cell clone JH293-C21-C14-C28 with CR2 deletion can effectively prevent the RCA production of replication-competent oncolytic adenovirus; this will provide significant advantages in utility and safety in gene therapy.
Collapse
Affiliation(s)
- Xueqi Lian
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Xiaoyan Zhao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Jingjing Zhong
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Chenglin Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Yongchao Chu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Zhimin Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| |
Collapse
|
2
|
Leikas AJ, Ylä-Herttuala S, Hartikainen JEK. Adenoviral Gene Therapy Vectors in Clinical Use-Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int J Mol Sci 2023; 24:16519. [PMID: 38003709 PMCID: PMC10671366 DOI: 10.3390/ijms242216519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.
Collapse
Affiliation(s)
- Aleksi J. Leikas
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juha E. K. Hartikainen
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
3
|
Gao M, Yngve E, Yu D, Jin C. A qPCR-Based Method for Quantification of RCA Contaminants in Oncolytic Adenovirus Products. Front Mol Biosci 2022; 9:883249. [PMID: 35677885 PMCID: PMC9169249 DOI: 10.3389/fmolb.2022.883249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic adenovirus is one of the most promising treatments against cancer and is widely evaluated clinically. During high titer production, “Wild-type-” like replication-competent adenovirus (RCA) contaminants can be generated through recombination events due to the DNA sequence similarity between oncolytic virus and host cells. These RCA contaminants raise various safety concerns in clinics. Cell culture-based methods have been developed to detect RCA contaminants in replication-deficient adenovirus vectors. These methods were based on that only RCA contaminants, but not the vectors, are able to grow in and lyse the test cell line. However, these methods are not suitable for distinguishing RCA contaminants from the oncolytic adenovirus products because both can replicate in test cell lines. Herein, we reported a qPCR-based method to quantify RCA contaminants quickly and reliably in E1B-deleted oncolytic adenovirus products. This method is based on specific detection of the E1B gene, which can be acquired during production via recombination events between viral and host cell DNA. The assay is sensitive with the limit of detection at 10 VP of the RCA contaminants and the limit of quantification at 75 VP of the RCA contaminants in each 40 µL qPCR reaction. We have also validated the method on virus batches produced in the non-GMP and GMP conditions. Our results showed that this qPCR-based method was reliable and robust for detecting and quantifying RCA contaminants in oncolytic adenovirus products. The method may also be adapted for other oncolytic adenoviruses products by switching primer sets.
Collapse
Affiliation(s)
- Menghan Gao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Yngve
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Leikas AJ, Laham-Karam N, Agtereek E, Peltonen HM, Selander T, Korpisalo P, Holappa L, Hartikainen JEK, Heikura T, Ylä-Herttuala S. Efficacy and Safety of Clinical-Grade Human Vascular Endothelial Growth Factor-D ΔNΔC Gene Therapy Containing Residual Replication-Competent Adenoviruses. Hum Gene Ther 2021; 32:761-770. [PMID: 33371775 DOI: 10.1089/hum.2020.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological bypass through induced angiogenesis by vascular endothelial growth factor D (VEGF-D) gene therapy (GT) is a new concept for the treatment of cardiac ischemia. Serotype 5 adenoviruses are used in the clinical trials for transferring the VEGF-D cDNA into the ischemic myocardium. However, the presence of replication-competent vectors in the adenovirus products is a widely recognized problem that may pose a potential safety risk to the treated patients. We compared three different VEGF-D GT production lots containing different levels of replication-competent adenoviruses (RCA) tested in 3 × 1010 viral particles (vp): <10 RCA (VEGF-D L-RCA1), 10-100 RCA (VEGF-D H-RCA2), and 100-200 RCA (VEGF-D H-RCA3), as measured by a novel droplet digital polymerase chain reaction (PCR) RCA assay in a preclinical rabbit model (n = 21). β-galactosidase encoding nonclinical-grade preparation was used as a nonangiogenic control. Each preparation was injected into the right semimembranosus muscle using dose of 1 × 1011 vp. Efficacy of the products was tested by the combination of contrast pulse sequencing ultrasound and modified Miles assay as well as quantifying the total cross-sectional area of capillaries. Safety, immunogenicity, toxicity, biodistribution, and shedding were assessed by general histology, serial measurements of C-reactive protein, white blood cell count and body temperature as well as using quantitative real-time PCR with primers targeted to the VEGF-D and replication-permitting E1 sequences. We found no significant differences in the efficacy or safety between the study groups. Most importantly, no detectable presence of RCA-specific E1 sequence was found in any samples tested, indicating that no detectable vector replication took place in vivo. We conclude that relatively low levels of RCA in adenoviral GT products may not be as important major safety issue as previously anticipated.
Collapse
Affiliation(s)
- Aleksi J Leikas
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eline Agtereek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Petra Korpisalo
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha E K Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
5
|
Condreay JP, Kost TA, Mickelson CA. Emerging Considerations in Virus-Based Gene Transfer Systems. BIOLOGICAL SAFETY 2016:221-246. [DOI: 10.1128/9781555819637.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Tada Y, Hiroshima K, Shimada H, Morishita N, Shirakawa T, Matsumoto K, Shingyoji M, Sekine I, Tatsumi K, Tagawa M. A clinical protocol to inhibit the HGF/c-Met pathway for malignant mesothelioma with an intrapleural injection of adenoviruses expressing the NK4 gene. SPRINGERPLUS 2015; 4:358. [PMID: 26191485 PMCID: PMC4503710 DOI: 10.1186/s40064-015-1123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
Abstract
Background The hepatocyte growth factor (HGF)/c-Met signal pathway is up-regulated in human mesothelioma and suppression of the HGF/c-Met signaling with a competitive inhibitor, NK4 homologous to HGF in the structure, produced anti-tumor effects to mesothelioma in a preclinical study. Mesothelioma is highly resistant to a number of chemotherapeutic agents but distant metastasis to extra-thoracic organs is relatively infrequent until the late stage. Methods/design We planned to conduct a clinical study of gene therapy with adenoviruses expressing the NK4 gene (Ad-NK4) to control the local tumor growth. The study is designed to inject Ad-NK4 into the intrapleural cavity with a dose escalation manner from 1010 to 1012 virus particles per patient and to examine safety and possible clinical benefits. The clinical investigation is a first-in-human trial to use the NK4 gene and to block the HGF/c-Met pathway with gene medicine. We conducted in vivo animal experiments to examine the safety level as one of the preclinical studies, and showed that Ad DNA administered in the pleural cavity was detected in many parenchymal organs. Biochemical and pathological analyses showed that liver damages were the major adverse effects with little toxicity to other organs. These studies firstly demonstrated biodistribution and transgene expression after an intrapleural injection of Ad vectors in an animal study, which contrasts with an intravenous injection showing relatively rapid clearance of Ad-NK4. Discussion The clinical study can also provide information regarding production of NK4 protein and antibody against NK4, and inhibition levels of the HGF/c-Met pathway by detecting dephosphorylation of c-Met in mesothelioma cells. These data will be crucial to judge whether local production of NK4 molecules can be an anti-cancer strategy. Trial registration: UMIN clinical trials registry, Japan. Register ID: UMIN15771
Collapse
Affiliation(s)
- Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Naoya Morishita
- Kobe University Graduate School of Health Science, Kobe, Japan
| | - Toshiro Shirakawa
- Kobe University Graduate School of Health Science, Kobe, Japan ; Divison of Translational Research for Biologics, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan ; Division of Urology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan ; Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Kumar R, Basagoudanavar SH, Sreenivasa BP. Detection of replication competent adenovirus upon serial passaging of recombinant adenovirus expressing FMDV capsid proteins. Biologicals 2015; 43:209-12. [PMID: 25748638 DOI: 10.1016/j.biologicals.2015.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 01/26/2023] Open
Abstract
Replication deficient human adenovirus type 5 (hAd5) is an important gene delivery vehicle and has been used in various fields of biomedical sciences such as gene therapy, cancer therapy and vaccination. Inspite of its various useful features, emergence of replication competent adenovirus (RCA) in recombinant virus stocks is a great concern. In the present study, recombinant adenovirus expressing foot-and-mouth disease virus serotype-O capsid proteins was propagated in HEK-293 cells and purified by CsCl density gradient ultracentrifugation. The virus was serially passaged in HEK-293 cells and at passage level (P) 2-4, 6, 8 and 12, tested for the presence of RCA. A vector dose of 2 × 10(8) and 1 × 10(10) TCID50 of the virus was used in cell line bioassay and PCR, respectively. Our results demonstrated that the PCR is more sensitive and rapid technique for the detection of RCA in recombinant adenovirus stocks as early as at P3, whereas the bioassay detected the RCA at P8.
Collapse
Affiliation(s)
- Ramesh Kumar
- Indian Veterinary Research Institute, Hebbal Campus, Bangalore 560 024, India
| | | | - B P Sreenivasa
- Indian Veterinary Research Institute, Hebbal Campus, Bangalore 560 024, India.
| |
Collapse
|
8
|
Paik MJ, Shim WY, Moon SM, Kim YM, Kim DW, Kim KR, Kim SA, Shim JS, Choi SD, Lee G. Altered Amino Acid Metabolic Patterns in the Plasma of Rat Models with Adenovirus Infection. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.5.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, Kawase A, Iwaki M, Hayakawa T, Fujiwara T, Mizuguchi H. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 2011; 17:2807-18. [PMID: 21346145 DOI: 10.1158/1078-0432.ccr-10-2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Oncolytic adenoviruses (Ad) have been actively pursued as potential agents for cancer treatment. Among the various types of oncolytic Ads, the telomerase-specific replication-competent Ad (TRAD), which possesses an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, has shown promising results in human clinical trials; however, the E1 gene is also slightly expressed in normal cells, leading to replication of TRAD and cellular toxicity in normal cells. EXPERIMENTAL DESIGN To overcome this problem, we utilized a microRNA (miRNA)-regulated gene expression system. Four copies of complementary sequences for miR-143, -145, -199a, or let-7a, which have been reported to be exclusively downregulated in tumor cells, were incorporated into the 3'-untranslated region of the E1 gene expression cassette. RESULTS Among the TRAD variants (herein called TRADs) constructed, TRADs containing the sequences complementary to miR-143, -145, or -199a showed efficient oncolytic activity comparable to the parental TRAD in the tumor cells. On the other hand, replication of the TRADs containing the miRNA complementary sequences was at most 1,000-fold suppressed in the normal cells, including primary normal cells. In addition, to suppress the replication of the TRADs in hepatocytes as well as other normal cells, we constructed a TRAD containing 2 distinct complementary sequences for miR-199a and liver-specific miR-122a (TRAD-122a/199aT). TRAD-122a/199aT exhibited more than 10-fold reduction in viral replication in all the normal cells examined, including primary hepatocytes. CONCLUSIONS This study showed that oncolytic Ads containing the sequences complementary to normal cell-specific miRNAs showed significantly improved safety profiles without altering tumor cell lysis activity.
Collapse
Affiliation(s)
- Kumiko Sugio
- Departments of Biochemistry and Molecular Biology and Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suzuki T, Sasaki T, Yano K, Sakurai F, Kawabata K, Kondoh M, Hayakawa T, Yagi K, Mizuguchi H. Development of a recombinant adenovirus vector production system free of replication-competent adenovirus by utilizing a packaging size limit of the viral genome. Virus Res 2011; 158:154-60. [PMID: 21470569 DOI: 10.1016/j.virusres.2011.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
In a conventional adenovirus (Ad) vector production method using 293 cells, homologous recombination between Ad vector DNA and 293 cell-derived Ad E1 DNA occurs with low efficiency, resulting in the generation of replication-competent adenovirus (RCA). RCA can induce the spread of replication-incompetent Ad vectors, leading to unexpected tissue damage. In order to overcome this problem, we developed an Ad vector production system free of RCA generation by utilizing the Ad packaging size limit of the viral genome. It is well known that up to approximately 105% (37.7 kb) of the wild-type genome (35.9 kb) can be packaged in the Ad virion. We designed the Ad vector genome by insertion of a transgene expression cassette into the E3 region, such that homologous recombination between the Ad vector DNA and 293 cell-derived Ad E1 DNA would produce an Ad vector genome that exceeds in the size of the packaging limit. In accord with our strategy, no RCA generation was observed during the passages when we used the E1 (3.2kb)-deleted Ad vectors containing a more than 3.0-kb transgene expression cassette in the E3 region. In contrast, the E1 (3.2kb)-deleted Ad vectors, which retain 37.7 kb of the viral genome and have an insertion of a 2.1-kb transgene expression cassette in the E3 region, generated RCA, although RCA derived from this Ad vector exceeded the packaging size limit (105.0%). These results suggest that RCA generation can be avoided when the genome size of RCA is more than 108.3% (38.9 kb) of the wild-type Ad genome. This Ad vector production system generates safe, easy, and efficient Ad vector stock for both basic study as well as clinical research.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shih SJ, Miyashita-Lin E, Tseng WJ, Wang A, Li J, Yagami M, Vives F, Aimi J, Lin A. Use of a bioamplification assay to detect nonselective recombinants and assess the genetic stability of oncolytic adenoviruses. Hum Gene Ther 2010; 21:1707-21. [PMID: 20629483 DOI: 10.1089/hum.2009.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Detection of nonselective adenoviruses in tissue- or tumor-selective oncolytic adenovirus preparations presents a technical challenge because of the conditionally replication-competent nature of oncolytic adenoviruses. Although quantitative PCR has been used extensively for detecting specific genes that are likely present in nonselective recombinants, the actual biological activity of nonselective genetic recombinants has not been demonstrated. Therefore, a bioassay that amplifies nonselective adenoviruses through multiple passages in nonpermissive cells was developed to detect biologically active nonselective recombinants using CG7870, a prostate-specific oncolytic adenovirus. The assay was sensitive, and its results were consistent with a quantitative PCR assay for four lots of CG7870. CG0070, a pan-tumor oncolytic adenovirus with no detectable wild-type-like recombinants by PCR, was subjected to a variation of this bioamplification assay using two different nonpermissive cell lines to both verify PCR results and assess its genetic stability under selection pressure. No evidence of the presence of biologically active nonselective recombinants was seen in the original material or after serial passaging in nonpermissive cells. Thus, this bioamplification assay is able to detect nonselective recombinants, and its results are consistent with quantitative PCR assays. A modified version of this assay is also useful for assessing the genetic stability of oncolytic adenoviruses that have no PCR-detectable recombinants.
Collapse
|
12
|
From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv 2008; 27:133-44. [PMID: 19013226 DOI: 10.1016/j.biotechadv.2008.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
Abstract
Human adenoviral viral vector serotype 5 (AdV) is presently the primary viral vector used in gene therapy trials. Advancements in AdV process development directly contribute to the clinical application and commercialization of the AdV gene delivery technology. Notably, the development of AdV production in suspension culture has driven the increase in AdV volumetric and specific productivity, therefore providing large quantities of AdV required for clinical studies. This review focuses on detailing the viral, cell and cell culture parameters governing the productivity of the three generations of AdV vectors.
Collapse
|
13
|
Hosoya N, Miura T, Kawana-Tachikawa A, Koibuchi T, Shioda T, Odawara T, Nakamura T, Kitamura Y, Kano M, Kato A, Hasegawa M, Nagai Y, Iwamoto A. Comparison between Sendai virus and adenovirus vectors to transduce HIV-1 genes into human dendritic cells. J Med Virol 2008; 80:373-82. [DOI: 10.1002/jmv.21052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Schalk JAC, de Vries CGJCA, Orzechowski TJH, Rots MG. A rapid and sensitive assay for detection of replication-competent adenoviruses by a combination of microcarrier cell culture and quantitative PCR. J Virol Methods 2007; 145:89-95. [PMID: 17588680 DOI: 10.1016/j.jviromet.2007.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 11/20/2022]
Abstract
The development of a rapid and sensitive assay for detection of replication-competent adenoviruses (RCAs) is described. This RCA assay consists of an incubation step of 4 days of adenoviral vectors on A549 cells in a microcarrier cell culture system followed by detection of amplified RCAs by E1-specific quantitative PCR. The detection limit of this assay is 3 RCAs in 1 x 10(10) vector particles per 70 ml of microcarrier cell culture. The main advantage of the combination of cell culture and PCR detection is that replicated virus can be detected long before cytopathic effects become visible and therefore, it is much faster than conventional cell culture-based assays. This assay was validated by spiking replication-incompetent adenoviral vectors with wild-type adenovirus serotype 5 (wt Ad5) as a positive control for RCA. It was found that the replication of wt Ad5 is hampered above a vector particle per cell ratio of 50. However, if microcarrier beads are used, many cells can be grown in a small suspension culture and consequently a large number of vector particles can be tested for contamination with RCA.
Collapse
Affiliation(s)
- Johanna A C Schalk
- National Institute for Public Health and the Environment, Centre for Biological Medicines and Medical Technology, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Uchida E, Kogi M, Oshizawa T, Furuta B, Satoh K, Iwata A, Murata M, Hikata M, Yamaguchi T. Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses. J Virol Methods 2007; 143:95-103. [PMID: 17433454 DOI: 10.1016/j.jviromet.2007.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 11/26/2022]
Abstract
To enhance the sensitivity of virus detection by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), a novel virus concentration method using polyethyleneimine (PEI)-conjugated magnetic beads was developed in our previous study. However, several viruses could not be concentrated by this method. In this paper, the conditions of virus concentration were optimized to concentrate a wide range of viruses more efficiently. The PEI beads adsorbed viruses more efficiently than other cationic polymers, and the optimum virus concentration was obtained under weak acidic conditions. Mass spectrometric analysis revealed that several serum proteins, such as complement type 3, complement type 4 and immunoglobulin M (IgM), were co-adsorbed by the PEI beads, suggesting that the beads may adsorb viruses not only by direct adsorption, but also via immune complex formation. This hypothesis was confirmed by the result that poliovirus, which PEI beads could not adsorb directly, could be concentrated by the beads via immune complex formation. On the other hand, hepatitis A (HAV) and hepatitis C (HCV) viruses were adsorbed directly by PEI beads almost completely. Like poliovirus, hepatitis B virus (HBV) was concentrated efficiently by the addition of anti-HBV IgM. In conclusion, virus concentration using PEI beads is a useful method to concentrate a wide range of viruses and can be used to enhance the sensitivity of detection of HAV, HBV and HCV.
Collapse
Affiliation(s)
- Eriko Uchida
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gao JQ, Eto Y, Yoshioka Y, Sekiguchi F, Kurachi S, Morishige T, Yao X, Watanabe H, Asavatanabodee R, Sakurai F, Mizuguchi H, Okada Y, Mukai Y, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S. Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J Control Release 2007; 122:102-10. [PMID: 17628160 DOI: 10.1016/j.jconrel.2007.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/11/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
Conjugation of polyethylene glycol to protein or particles (PEGylation) prolongs their plasma half-lives and promotes their accumulation in tumors due to enhanced permeability and retention (EPR) effect. Although PEGylation of adenovirus vectors (Ads) is an attractive strategy to improve the in vivo kinetics of conventional Ads, the EPR effect of PEGylated Ad (PEG-Ad) had not previously been reported. In this study, we prepared PEG-Ads with PEG at various modification ratios, injected them intravenously into tumor-bearing mice, and determined the blood kinetics, viral distribution, and gene expression patterns, respectively. In addition, we conducted a cancer therapeutic study of PEG-Ad encoding tumor necrosis factor (TNF)-alpha. The plasma half-life of PEG-Ad was longer than that of unmodified-Ad, and accumulation of PEG-Ad in tumor tissue increased as the PEG modification ratio increased. In particular, PEG-Ad with about 90% modification ratio showed higher (35 times) gene expression in tumor and lower (6%) in liver, compared with values for unmodified Ad. Moreover, PEG-Ad encoding TNF-alpha demonstrated not only stronger tumor-suppressive activity but also fewer hepatotoxic side effects compared with unmodified-Ad. PEGylation of Ad achieved tumor targeting through the EPR effect, and these attributes suggest that systemic injection of PEG-Ad has great potential as an anti-tumor treatment.
Collapse
Affiliation(s)
- Jian-Qing Gao
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang C, Gheyas F. Sampling strategies for detecting rare impurities: an application in gene therapy products. J Biopharm Stat 2005; 15:241-52. [PMID: 15796292 DOI: 10.1081/bip-200049834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Detection of rare impurities in drug products presents special challenges. Replication competent adenovirus (RCA) is a rare impurity found in adenovirus-based gene therapy products. Various methods are used for detection of RCAs. We primarily focus on qualitative assays. Acceptance sampling plans for detecting RCAs in batches of gene therapy products are discussed. Assuming that the number of RCA units per patient dose follows a Poisson distribution, operating characteristics (OC) of these sampling plans can be studied. The OC curves display the acceptance probabilities for batches with specific true but unknown level of RCA and can be used to assess the specificity and sensitivity of the test strategies. Application of Bayesian methodologies in the assessment of RCA levels in drug batches is also discussed. Using observed data and prior belief, a 95% credible region for the number of RCA units per patient dose can be constructed. Both classical and Bayesian calculations display the impact of sample size, sampling fraction, and assay quality on the detection of RCA. For better sensitivity, the largest possible sampling fraction that does not interfere with the logistics and the performance of the assay should be used. The choice of sample size will depend on the upper limit of the biologically safe level of RCA, the testing strategy, the desired level of sensitivity and specificity, and also on practical issues.
Collapse
Affiliation(s)
- Chen Wang
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033-1300, USA
| | | |
Collapse
|
18
|
Uchida E, Sato K, Iwata A, Ishii-Watabe A, Mizuguchi H, Hikata M, Murata M, Yamaguchi T, Hayakawa T. An improved method for detection of replication-competent retrovirus in retrovirus vector products. Biologicals 2004; 32:139-46. [PMID: 15536044 DOI: 10.1016/j.biologicals.2004.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 08/19/2004] [Indexed: 11/16/2022] Open
Abstract
Contamination by replication-competent retrovirus (RCR) is one of the most important safety issues of retrovirus vector products for gene therapy clinical research. To improve the sensitivity of RCR detection and to shorten the assay period, we have developed a novel RCR detection method (infectivity RT-PCR method) based on real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) in combination with virus infection and a novel virus concentration method using polyethyleneimine (PEI)-conjugated magnetic beads. In this method, permissive cells were infected with RCR samples, and amplified RCR in the culture supernatants was adsorbed by PEI-beads. Then RCR RNA extracted from PEI-beads was quantified by real-time RT-PCR. We demonstrated that 1 infectious unit (iu) of RCR spiked in 10(6) cfu/ml of vector products could be detected within 3 days, and the sensitivity for viral detection was increased 3- to 10-fold compared with the direct S+L- assay. By this method, the presence of retroviral vector interfered with RCR detection only slightly. In conclusion, infectivity RT-PCR conducted in conjunction with virus concentration using PEI-beads can detect RCR more sensitively and rapidly than the conventional infectivity assay.
Collapse
Affiliation(s)
- Eriko Uchida
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|