1
|
Yang C, Wang S, Qi Y, Jin Y, Guan R, Huang Z. Mechanisms of adipocyte regulation: Insights from HADHB gene modulation. PLoS One 2025; 20:e0319384. [PMID: 40146690 PMCID: PMC11949335 DOI: 10.1371/journal.pone.0319384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 03/29/2025] Open
Abstract
The HADHB gene encodes the beta-subunit of 3-hydroxy acyl-CoA dehydrogenase, closely related to energy metabolism, fatty acid synthesis, and catabolism. This study aimed to investigate the effect of the HADHB gene on the proliferation and differentiation of bovine preadipocytes and to gain new insights into the mechanisms of adipocyte regulation. RNA was extracted from adipose tissue of yellow cattle and the HADHB gene CDS region was cloned. Meanwhile, isolation and cultivation of preadipocytes were used for siRNA and adenovirus overexpression, quantitative real-time PCR, transcriptome sequencing, and cell proliferation and cell cycle were measured by oil red staining, CCK8 assay, and flow cytometry. Subsequently, the transcriptome data were analyzed using bioinformatics. The results showed that the HADHB gene modulates significantly the expression of critical genes involved in proliferation (CDK2 and PCNA) and differentiation (PPARγ and CEBPα), influencing preadipocyte proliferation and differentiation and altering cell cycle progression. The results of transcriptome sequencing demonstrated that the overexpression of the HADHB gene markedly altered the transcriptional profile of preadipocytes, with 170 genes exhibiting a significant increase in expression and 113 genes displaying a decrease. The HADHB gene exerts a regulatory influence on the differentiation process of precursor adipocytes by modulating the expression of key genes involved in proliferation and differentiation.These findings highlight the central role of the HADHB gene in adipocyte regulation and provide new insights into the regulatory mechanisms governing adipocyte biology.
Collapse
Affiliation(s)
- Chaoyun Yang
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Shuzhe Wang
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Yunxia Qi
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Yadong Jin
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Ran Guan
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Zengwen Huang
- College of Animal Science and Technology, Xichang University, Xichang, China
| |
Collapse
|
2
|
Bertschi A, Stefanov BA, Xue S, Charpin-El Hamri G, Teixeira AP, Fussenegger M. Controlling therapeutic protein expression via inhalation of a butter flavor molecule. Nucleic Acids Res 2023; 51:e28. [PMID: 36625292 PMCID: PMC10018347 DOI: 10.1093/nar/gkac1256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes. Wild-type mice implanted with alginate-encapsulated cells transgenic for the acetoin gene switch showed a dose-dependent increase in blood levels of reporter protein in response to either administration of acetoin solution via oral gavage or longer exposure to acetoin aerosol generated by a commercial portable inhaler. Intake of typical acetoin-containing foods, such as butter, lychees and cheese, did not activate transgene expression. As a proof of concept, we show that blood glucose levels were normalized by acetoin aerosol inhalation in type-I diabetic mice implanted with acetoin-responsive insulin-producing cells. Delivery of trigger molecules using portable inhalers may facilitate regular administration of therapeutic proteins via next-generation cell-based therapies to treat chronic diseases for which frequent dosing is required.
Collapse
Affiliation(s)
- Adrian Bertschi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Bozhidar-Adrian Stefanov
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard, Lyon 1 Villeurbanne Cedex F-69622, France
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
3
|
Liu Y, Charpin-El Hamri G, Ye H, Fussenegger M. A synthetic free fatty acid-regulated transgene switch in mammalian cells and mice. Nucleic Acids Res 2019; 46:9864-9874. [PMID: 30219861 PMCID: PMC6182168 DOI: 10.1093/nar/gky805] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Trigger-inducible transgene expression systems are utilized in biopharmaceutical manufacturing and also to enable controlled release of therapeutic agents in vivo. We considered that free fatty acids (FFAs), which are dietary components, signaling molecules and important biomarkers, would be attractive candidates as triggers for novel transgene switches with many potential applications, e.g. in future gene- and cell-based therapies. To develop such a switch, we rewired the signal pathway of human G-protein coupled receptor 40 to a chimeric promoter triggering gene expression through an increase of intracellular calcium concentration. This synthetic gene switch is responsive to physiologically relevant FFA concentrations in different mammalian cell types grown in culture or in a bioreactor, or implanted into mice. Animal recipients of microencapsulated sensor cells containing this switch exhibited significant transgene induction following consumption of dietary fat (such as Swiss cheese) or under hyperlipidaemic conditions, including obesity, diabetes and lipodystrophy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Université Claude Bernard 1, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
4
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Wang H, Ye H, Xie M, Daoud El-Baba M, Fussenegger M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res 2015; 43:e91. [PMID: 25943548 PMCID: PMC4538802 DOI: 10.1093/nar/gkv326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, 200241 Shanghai, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, F-69622 Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
6
|
Ausländer S, Fussenegger M. From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol 2013; 31:155-68. [DOI: 10.1016/j.tibtech.2012.11.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/14/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
|
7
|
Design and Application of Synthetic Biology Devices for Therapy. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Collapse
Affiliation(s)
- Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104 Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Hebelstrasse 25, Freiburg, D-79104 Germany
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058 Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058 Switzerland
| |
Collapse
|
10
|
|
11
|
Hartenbach S, Daoud-El Baba M, Weber W, Fussenegger M. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice. Nucleic Acids Res 2007; 35:e136. [PMID: 17947334 PMCID: PMC2175317 DOI: 10.1093/nar/gkm652] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (PART) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals.
Collapse
Affiliation(s)
- Shizuka Hartenbach
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
12
|
Abstract
Controlling gene activity in space and time represents a cornerstone technology in gene and cell therapeutic applications, bioengineering, drug discovery as well as fundamental and applied research. This chapter provides a comprehensive overview of the different approaches for regulating gene activity and product protein formation at different biosynthetic levels, from genomic rearrangements over transcription and translation control to strategies for engineering inducible secretion and protein activity with a focus on the development during the past 2 years. Recent advances in designing second-generation gene switches, based on novel inducer administration routes (gas phase) as well as on the combination of heterologous switches with endogenous signals, will be complemented by an overview of the emerging field of mammalian synthetic biology, which enables the design of complex synthetic and semisynthetic gene networks. This article will conclude with an overview of how the different gene switches have been applied in gene therapy studies, bioengineering and drug discovery.
Collapse
Affiliation(s)
- W Weber
- Institute for Chemical and Bioengineering, ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | |
Collapse
|
13
|
Mullick A, Xu Y, Warren R, Koutroumanis M, Guilbault C, Broussau S, Malenfant F, Bourget L, Lamoureux L, Lo R, Caron AW, Pilotte A, Massie B. The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol 2006; 6:43. [PMID: 17083727 PMCID: PMC1654148 DOI: 10.1186/1472-6750-6-43] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 11/03/2006] [Indexed: 11/24/2022] Open
Abstract
Background A number of expression systems have been developed where transgene expression can be regulated. They all have specific characteristics making them more suitable for certain applications than for others. Since some applications require the regulation of several genes, there is a need for a variety of independent yet compatible systems. Results We have used the regulatory mechanisms of bacterial operons (cmt and cym) to regulate gene expression in mammalian cells using three different strategies. In the repressor configuration, regulation is mediated by the binding of the repressor (CymR) to the operator site (CuO), placed downstream of a strong constitutive promoter. Addition of cumate, a small molecule, relieves the repression. In the transactivator configuration, a chimaeric transactivator (cTA) protein, formed by the fusion of CymR with the activation domain of VP16, is able to activate transcription when bound to multiple copies of CuO, placed upstream of the CMV minimal promoter. Cumate addition abrogates DNA binding and therefore transactivation by cTA. Finally, an adenoviral library of cTA mutants was screened to identify a reverse cumate activator (rcTA), which activates transcription in the presence rather than the absence of cumate. Conclusion We report the generation of a new versatile inducible expression system.
Collapse
Affiliation(s)
- Alaka Mullick
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- Départment de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Yan Xu
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - René Warren
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Maria Koutroumanis
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- Invitrogen, 688 East Main Street, Branford, CT, 06405, USA
| | - Claire Guilbault
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Sophie Broussau
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- Départment de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Félix Malenfant
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Lucie Bourget
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Linda Lamoureux
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- AstraZeneca, 7171, Frédérick-Banting, Ville St.-Laurent, Montréal, Québec, H4S 1Z9, Canada
| | - Rita Lo
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Antoine W Caron
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Amelie Pilotte
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- Départment de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Bernard Massie
- Institut de Recherche en Biotechnologie, Conseil National de Recherches du Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
- INRS-IAF, Université du Québec, Laval, Québec, H7N 4Z3, Canada
- Départment de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
14
|
Abstract
Pharmacologic transgene-expression dosing is considered essential for future gene therapy scenarios. Genetic interventions require precise transcription or translation fine-tuning of therapeutic transgenes to enable their titration into the therapeutic window, to adapt them to daily changing dosing regimes of the patient, to integrate them seamlessly into the patient's transcriptome orchestra, and to terminate their expression after successful therapy. In recent years, decisive progress has been achieved in designing high-precision trigger-inducible mammalian transgene control modalities responsive to clinically licensed and inert heterologous molecules or to endogenous physiologic signals. Availability of a portfolio of compatible transcription control systems has enabled assembly of higher-order control circuitries providing simultaneous or independent control of several transgenes and the design of (semi-)synthetic gene networks, which emulate digital expression switches, regulatory transcription cascades, epigenetic expression imprinting, and cellular transcription memories. This review provides an overview of cutting-edge developments in transgene control systems, of the design of synthetic gene networks, and of the delivery of such systems for the prototype treatment of prominent human disease phenotypes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology Zurich-ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
15
|
Hartenbach S, Fussenegger M. Autoregulated, bidirectional and multicistronic gas-inducible mammalian as well as lentiviral expression vectors. J Biotechnol 2005; 120:83-98. [PMID: 16026881 DOI: 10.1016/j.jbiotec.2005.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/04/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
We present a novel set of autoregulated, bidirectional and multicistronic mammalian as well as lentiviral expression vectors which enable transgene expression fine-tuning by gaseous acetaldehyde. The acetaldehyde-inducible regulation (AIR) technology capitalizes on Aspergillus nidulans components evolved to convert ethanol into metabolic energy. AIR is based on functional interaction of the fungal transactivator AlcR and AlcR-specific chimeric promoters (P(AIR)) which drive desired transgene expression in mammalian cells only in the presence of gaseous acetaldehyde. We have engineered AIR technology into a variety of different mammalian and lentiviral expression vector systems including (i) a most compact autoregulated expression format harboring alcR and the transgene in a single P(AIR)-driven transcription unit, (ii) a bidirectional P(AIR) derivative supporting expression of two transgenes with strict 1:1 transcription stoichiometry and (iii) a multicistronic expression arrangement providing simultaneous translation of three independent transgenes from a single P(AIR)-controlled transcript. All expression vectors have been validated in Chinese hamster ovary (CHO-K1), baby hamster kidney (BHK-21) and human HeLa cells for gas-inducible (co-)expression of the reporter transgenes such as Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY), human vascular endothelial growth factor 121 (VEGF121), human placental-secreted alkaline phosphatase (SEAP) and Escherichia coli-derived chloramphenicol acetyl-transferase (CAT). The panoply of mammalian/lentiviral vectors presented here provides a robust and versatile expression platform for the first gas-inducible transgene control system which we expect to foster future advances in gene therapy, tissue engineering as well as biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Shizuka Hartenbach
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
16
|
Malphettes L, Weber CC, El-Baba MD, Schoenmakers RG, Aubel D, Weber W, Fussenegger M. A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1. Nucleic Acids Res 2005; 33:e107. [PMID: 16002786 PMCID: PMC1174900 DOI: 10.1093/nar/gni107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe the design and detailed characterization of 6-hydroxy-nicotine (6HNic)-adjustable transgene expression (NICE) systems engineered for lentiviral transduction and in vivo modulation of angiogenic responses. Arthrobacter nicotinovorans pAO1 encodes a unique catabolic machinery on its plasmid pAO1, which enables this Gram-positive soil bacterium to use the tobacco alkaloid nicotine as the exclusive carbon source. The 6HNic-responsive repressor-operator (HdnoR-O(NIC)) interaction, controlling 6HNic oxidase production in A.nicotinovorans pAO1, was engineered for generic 6HNic-adjustable transgene expression in mammalian cells. HdnoR fused to different transactivation domains retained its O(NIC)-binding capacity in mammalian cells and reversibly adjusted transgene transcription from chimeric O(NIC)-containing promoters (P(NIC); O(NIC) fused to a minimal eukaryotic promoter [P(min)]) in a 6HNic-responsive manner. The combination of transactivators containing various transactivation domains with promoters differing in the number of operator modules as well as in their relative inter-O(NIC) and/or O(NIC)-P(min) spacing revealed steric constraints influencing overall NICE regulation performance in mammalian cells. Mice implanted with microencapsulated cells engineered for NICE-controlled expression of the human glycoprotein secreted placental alkaline phosphatase (SEAP) showed high SEAP serum levels in the absence of regulating 6HNic. 6HNic was unable to modulate SEAP expression, suggesting that this nicotine derivative exhibits control-incompatible pharmacokinetics in mice. However, chicken embryos transduced with HIV-1-derived self-inactivating lentiviral particles transgenic for NICE-adjustable expression of the human vascular endothelial growth factor 121 (VEGF121) showed graded 6HNic response following administration of different 6HNic concentrations. Owing to the clinically inert and highly water-soluble compound 6HNic, NICE-adjustable transgene control systems may become a welcome alternative to available drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ronald G. Schoenmakers
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- Integrative Bioscience Institute, Swiss Federal Institute of Technology LausanneCH-1015 Lausanne, Switzerland
| | - Dominique Aubel
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Wilfried Weber
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Martin Fussenegger
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 3448; Fax: +41 44 633 1234;
| |
Collapse
|
17
|
Gonzalez-Nicolini V, Fussenegger M. A novel binary adenovirus-based dual-regulated expression system for independent transcription control of two different transgenes. J Gene Med 2005; 7:1573-85. [PMID: 16052603 DOI: 10.1002/jgm.787] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Stringent multitransgene control is a prerequisite for future gene-therapy and tissue-engineering scenarios and requires constant improvements in design to achieve optimal conditional transcription profiles. METHODS We have pioneered a variety of recombinant adenoviruses which (i) enable streptogramin-responsive transgene transduction in a compact autoregulated one-virus format, (ii) manage independent streptogramin- and tetracycline-responsive control of two different transgenes from a single divergent expression unit, and (iii) control sense and antisense expression of the human cyclin-dependent kinase inhibitor p27(Kip1) to engineer conditional positive (enforced S-phase entry, p27(Kip1)-antisense expression) or negative (G1-phase-specific growth arrest, p27(Kip1)-sense expression) growth control in mammalian cell lines and human primary cells. RESULTS The transgene control performance of all adenoviral expression configurations has been rigorously optimized for tight, balanced and maximum expression levels and was validated for intracellular as well as for secreted product in a variety of biotechnologically relevant cell lines (Chinese hamster ovary cells [CHO-K1], baby hamster kidney cells [BHK-21]) as well as in human cell lines (human fibrosarcoma cells [HT-1080]) and primary cells (human aortic fibroblasts [HAFs]). CONCLUSIONS We believe that multiregulated multigene-controlled adenoviruses are important assets for successful therapeutic reprogramming of mammalian cells in clinically relevant scenarios.
Collapse
Affiliation(s)
- Valeria Gonzalez-Nicolini
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
18
|
Weber W, Fussenegger M. Approaches for trigger-inducible viral transgene regulation in gene-based tissue engineering. Curr Opin Biotechnol 2004; 15:383-91. [PMID: 15464366 DOI: 10.1016/j.copbio.2004.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in mammalian transgene expression dosing have resulted in a portfolio of mutually compatible systems that can adjust therapeutic transgene levels in response to antibiotics, hormone analogues, quorum-sensing messengers and secondary metabolites. The molecular merger of trigger-inducible expression technology with the latest generation of virus-derived transduction systems has enabled unmatched clinical interventions to shape desired therapeutic cell and tissue phenotypes for the treatment of complex human diseases.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich
| | | |
Collapse
|