1
|
Zhang N, Wen K. The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 2024; 52:142. [PMID: 39219266 PMCID: PMC11378159 DOI: 10.3892/or.2024.8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
Collapse
Affiliation(s)
- Nianjie Zhang
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
2
|
Ding T, Xu H, Zhang X, Yang F, Zhang J, Shi Y, Bai Y, Yang J, Chen C, Zhu C, Zhang H. Prohibitin 2 orchestrates long noncoding RNA and gene transcription to accelerate tumorigenesis. Nat Commun 2024; 15:8385. [PMID: 39333493 PMCID: PMC11436821 DOI: 10.1038/s41467-024-52425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
The spatial co-presence of aberrant long non-coding RNAs (lncRNAs) and abnormal coding genes contributes to malignancy development in various tumors. However, precise coordinated mechanisms underlying this phenomenon in tumorigenesis remains incompletely understood. Here, we show that Prohibitin 2 (PHB2) orchestrates the transcription of an oncogenic CASC15-New-Isoform 2 (CANT2) lncRNA and the coding tumor-suppressor gene CCBE1, thereby accelerating melanoma tumorigenesis. In melanoma cells, PHB2 initially accesses the open chromatin sites at the CANT2 promoter, recruiting MLL2 to augment H3K4 trimethylation and activate CANT2 transcription. Intriguingly, PHB2 further binds the activated CANT2 transcript, targeting the promoter of the tumor-suppressor gene CCBE1. This interaction recruits histone deacetylase HDAC1 to decrease H3K27 acetylation at the CCBE1 promoter and inhibit its transcription, significantly promoting tumor cell growth and metastasis both in vitro and in vivo. Our study elucidates a PHB2-mediated mechanism that orchestrates the aberrant transcription of lncRNAs and coding genes, providing an intriguing epigenetic regulatory model in tumorigenesis.
Collapse
Affiliation(s)
- Tianyi Ding
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Haowen Xu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Fan Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Jixing Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yibing Shi
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yiran Bai
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Jiaqi Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Chengbo Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - He Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China.
- School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
3
|
Ding T, Zhang J, Xu H, Zhang X, Yang F, Shi Y, Bai Y, Yang J, Chen C, Zhang H. In-depth understanding of higher-order genome architecture in orphan cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188948. [PMID: 37394019 DOI: 10.1016/j.bbcan.2023.188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The human genome is intertwined, folded, condensed, and gradually constitutes the 3D architecture, thereby affecting transcription and widely involving in tumorigenesis. Incidence and mortality rates for orphan cancers increase due to poor early diagnosis and lack of effective medical treatments, which are now getting attention. In-depth understanding in tumorigenesis has fast-tracked over the last decade, however, the further role and mechanism of 3D genome organization in variant orphan tumorigenesis remains to be fully understood. We summarize for the first time that higher-order genome organization can provide novel insights into the occurrence mechanisms of orphan cancers, and discuss probable future research directions for drug development and anti-tumor therapies.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Haowen Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Fan Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yibing Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yiran Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jiaqi Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Chaoqun Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China.
| |
Collapse
|
4
|
Ding T, Zhang H. Novel biological insights revealed from the investigation of multiscale genome architecture. Comput Struct Biotechnol J 2022; 21:312-325. [PMID: 36582436 PMCID: PMC9791078 DOI: 10.1016/j.csbj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression and cell fate determination require precise and coordinated epigenetic regulation. The complex three-dimensional (3D) genome organization plays a critical role in transcription in myriad biological processes. A wide range of architectural features of the 3D genome, including chromatin loops, topologically associated domains (TADs), chromatin compartments, and phase separation, together regulate the chromatin state and transcriptional activity at multiple levels. With the help of 3D genome informatics, recent biochemistry and imaging approaches based on different strategies have revealed functional interactions among biomacromolecules, even at the single-cell level. Here, we review the occurrence, mechanistic basis, and functional implications of dynamic genome organization, and outline recent experimental and computational approaches for profiling multiscale genome architecture to provide robust tools for studying the 3D genome.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - He Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| |
Collapse
|
5
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
6
|
Zhang Y, Sun Y, Ding L, Shi W, Ding K, Zhu Y. Long Non-Coding RNA LINC00467 Correlates to Poor Prognosis and Aggressiveness of Breast Cancer. Front Oncol 2021; 11:643394. [PMID: 33996559 PMCID: PMC8113855 DOI: 10.3389/fonc.2021.643394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer remains the leading cause of female cancer-related mortalities worldwide. Long non-coding RNAs (LncRNAs) have been increasingly reported to play pivotal roles in tumorigenesis and cancer progression. Herein, we focused on LINC00467, which has never been studied in breast cancer. Silence of LINC00467 suppressed proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) of breast cancer cells in vitro, whereas forced expression of LINC00467 exhibited the opposite effects. Furthermore, we demonstrated overexpression of LINC00467 promoted tumor growth, while knockdown of LINC00467 inhibited pulmonary metastasis in vivo. Mechanistically, LINC00467 down-regulated miR-138-5p by acting as a miRNA “sponge”. Besides, LINC00467 also up-regulated the protein level of lin-28 homolog B (LIN28B) via a direct interaction. A higher expression level of LINC00467 was observed in breast cancer tissues as compared to the adjacent normal counterparts and elevated LINC00467 predicted poor overall survival. Our findings suggest LINC00467 promotes progression of breast cancer through interacting with miR-138-5p and LIN28B directly. LINC00467 may serve as a potential candidate for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Yi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Ding Y, Yu J, Chen X, Wang S, Tu Z, Shen G, Wang H, Jia R, Ge S, Ruan J, Leong KW, Fan X. Dose-Dependent Carbon-Dot-Induced ROS Promote Uveal Melanoma Cell Tumorigenicity via Activation of mTOR Signaling and Glutamine Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002404. [PMID: 33898168 PMCID: PMC8061404 DOI: 10.1002/advs.202002404] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/07/2021] [Indexed: 05/04/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults and has a low survival rate following metastasis; it is derived from melanocytes susceptible to reactive oxygen species (ROS). Carbon dot (Cdot) nanoparticles are a promising tool in cancer detection and therapy due to their unique photophysical properties, low cytotoxicity, and efficient ROS productivity. However, the effects of Cdots on tumor metabolism and growth are not well characterized. Here, the effects of Cdots on UM cell metabolomics, growth, invasiveness, and tumorigenicity are investigated in vitro and in vivo zebrafish and nude mouse xenograft model. Cdots dose-dependently increase ROS levels in UM cells. At Cdots concentrations below 100 µg mL-1, Cdot-induced ROS promote UM cell growth, invasiveness, and tumorigenicity; at 200 µg mL-1, UM cells undergo apoptosis. The addition of antioxidants reverses the protumorigenic effects of Cdots. Cdots at 25-100 µg mL-1 activate Akt/mammalian target of rapamycin (mTOR) signaling and enhance glutamine metabolism, generating a cascade that promotes UM cell growth. These results demonstrate that moderate, subapoptotic doses of Cdots can promote UM cell tumorigenicity. This study lays the foundation for the rational application of ROS-producing nanoparticles in tumor imaging and therapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Jie Yu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Xingyu Chen
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Shaoyun Wang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Guangxia Shen
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Huixue Wang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Renbing Jia
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| |
Collapse
|
8
|
Wen X, Wang H, Chai P, Fan J, Zhang X, Ding T, Jia R, Ge S, Zhang H, Fan X. An Artificial CTCF Peptide Triggers Efficient Therapeutic Efficacy in Ocular Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:317-325. [PMID: 32775616 PMCID: PMC7394857 DOI: 10.1016/j.omto.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Although CCCTC binding factor (CTCF) has been demonstrated to play a variety of often contradictory roles in tumorigenesis, little is known about its function in the tumorigenesis of ocular melanoma. Here, we generated two artificial CTCF peptides (Decoy-CTCFs) combining the zinc finger domain of wild-type CTCF and artificial marker region. This Decoy-CTCF retained the DNA binding region but lost the functional regions of wild-type CTCF. Transferring artificial CTCF into ocular melanoma cells suppressed proliferation and migration in the tumor cells, while no effect was observed in normal cells. Intriguingly, we first showed that decoy-CTCF inhibited tumorigenesis by preventing the histone acetyltransferase EP300 from binding to the promoter of SELL. Thus SELL was a novel oncogene in the tumorigenesis of ocular melanoma. These studies provide efficient decoy CTCF-based therapeutic concept in malignant ocular melanoma and reveal the potential mechanism underlying decoy-based tumor therapy.
Collapse
Affiliation(s)
- Xuyang Wen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Huixue Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
9
|
Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM, Ma YS. Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:712-724. [PMID: 32771923 PMCID: PMC7412722 DOI: 10.1016/j.omtn.2020.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Long-chain non-coding RNAs (lncRNAs) are RNA molecules with a length greater than 200 nt and no function of encoding proteins. lncRNAs play a precise regulatory function at different levels of transcription and post-transcription, and they interact with various regulatory factors to regulate gene expression, and then participate in cell growth, differentiation, apoptosis, and other life processes. In recent years, studies have shown that the abnormal expression of lncRNAs is closely related to the occurrence and development of tumors, which is expected to become an effective biomarker in tumor diagnosis. The sequencing analysis of mutations in the whole tumor genome suggests that mutations in non-coding regions may play an important role in the occurrence and development of tumors. Therefore, in-depth study of lncRNAs is helpful to clarify the molecular mechanism of tumor occurrence and development and to provide new targets for tumor diagnosis and treatment. This review introduces the molecular mechanism and clinical application prospect of lncRNAs affecting tumor development from the perspective of gene expression and regulation.
Collapse
Affiliation(s)
- Da Fu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ting-Miao Wu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Shui Ma
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
10
|
Tan Y, Li Y, Tang F. Oncogenic seRNA functional activation: a novel mechanism of tumorigenesis. Mol Cancer 2020; 19:74. [PMID: 32278350 PMCID: PMC7149907 DOI: 10.1186/s12943-020-01195-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase II and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA. Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and angiogenesis. In this article, we comprehensively summarized seRNA’s characteristics and functions, and emphatically introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also discussed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|