1
|
Motta CM, Keller MD, Bollard CM. Applications of Virus specific T cell Therapies Post BMT. Semin Hematol 2022; 60:10-19. [PMID: 37080705 DOI: 10.1053/j.seminhematol.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.
Collapse
|
2
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Lai M, Maori E, Quaranta P, Matteoli G, Maggi F, Sgarbanti M, Crucitta S, Pacini S, Turriziani O, Antonelli G, Heeney JL, Freer G, Pistello M. CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Proviral DNA Circles with Reformed Long Terminal Repeats. J Virol 2021; 95:e0135821. [PMID: 34549986 PMCID: PMC8577360 DOI: 10.1128/jvi.01358-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 12/03/2022] Open
Abstract
Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs. These extrachromosomal elements were recovered and probed for residual activity through their transfection in uninfected cells. We discovered that they can be transcriptionally active in the presence of Tat and Rev. Although confirming that gene editing is a powerful tool to eradicate HIV-1 infection, this work highlights that, to achieve this goal, the LTRs must be cleaved in several pieces to avoid residual activity and minimize the risk of reintegration in the context of genomic instability, possibly caused by the off-target activity of Cas9. IMPORTANCE The excision of HIV-1 provirus from the host cell genome has proven feasible in vitro and, to some extent, in vivo. Among the different approaches, CRISPR/Cas9 is the most promising tool for gene editing. The present study underlines the remarkable effectiveness of CRISPR/Cas9 in removing the HIV-1 provirus from infected cells and investigates the fate of the excised HIV-1 genome. This study demonstrates that the free provirus may persist in the cell after editing and in appropriate circumstances may reactivate. As an episome, it might be transcriptionally active, especially in the presence of Tat and Rev. The persistence of the HIV-1 episome was strongly decreased by gene editing with multiple targets. Although gene editing has the potential to eradicate HIV-1 infection, this work highlights a potential issue that warrants further investigation.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eyal Maori
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paola Quaranta
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giulia Matteoli
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Stefania Crucitta
- Pharmacology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Pacini
- Hematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jonathan L. Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Giulia Freer
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|