1
|
Pan R, Koo C, Su W, You Q, Guo H, Liu B. Circular RNAs modulate cell death in cardiovascular diseases. Cell Death Discov 2025; 11:214. [PMID: 40316538 PMCID: PMC12048724 DOI: 10.1038/s41420-025-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a global health challenge, with programmed cell death (PCD) mechanisms like apoptosis and necroptosis playing key roles in the progression. Circular RNAs (circRNAs) have recently been recognized as crucial regulators of gene expression, especially in modulating PCD. In current researches, circRNA regulation of apoptosis is the most studied area, followed by autophagy and ferroptosis. Notably, the regulatory role of circRNAs in pyroptosis and necroptosis has also begun to attract attention. From a mechanistic perspective, circRNAs influence cellular processes through several modes of action, including miRNA sponging, protein interactions, and polypeptide translation. Manipulating circRNAs and their downstream targets through inhibition or overexpression offers versatile therapeutic options for CVD treatment. Continued investigation into circRNA-mediated mechanisms may enhance our understanding of CVD pathophysiology and underscore their potential as novel and promising therapeutic targets.
Collapse
Affiliation(s)
- Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chinying Koo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenyuan Su
- Sport Medicine & Rehabilitation Center, Shanghai University of Sport, Shanghai, 200438, China
| | - Qianhui You
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Du WW, Rafiq M, Yuan H, Li X, Wang S, Wu J, Wei J, Li R, Guo H, Yang BB. A Novel Protein NAB1-356 Encoded by circRNA circNAB1 Mitigates Atrial Fibrillation by Reducing Inflammation and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411959. [PMID: 40145839 PMCID: PMC12120700 DOI: 10.1002/advs.202411959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Indexed: 03/28/2025]
Abstract
Atrial fibrillation (AF) is a common arrhythmia with irregular atrial electrical activity. Circular RNAs (circRNAs) are key regulators in tissue homeostasis, yet their role in AF remains unclear. Here, we investigated the expression and function of circNAB1 in AF using high-throughput sequencing and functional assays in circNAB1 transgenic mice. We identified circNAB1 as a significantly downregulated circRNA in AF patient specimens. Silencing circNAB1 promoted collagen deposition and inflammation, whereas overexpression reduces atrial fibrosis and AF susceptibility in mice, consistent with results observed in human atrial tissues. Mechanistically, circNAB1 translates into a novel protein, NAB1-356, which is highly expressed in human cardiac hypertrophy. NAB1-356 interacts with EGR1 as NAB1 does, decreasing fibrosis and inflammation in the atrium. Furthermore, NAB1-356 also regulates transcription factor Runx1 and Gadd45b transcription, exerting regulatory effects on cytokine expression and fibrosis. Targeting EGR1, Gadd45b, and Runx1 by circNAB1 or siRNAs attenuate AF incidence and cardiac remodeling, suggesting potential therapeutic strategies for AF management. Delivery of circNAB1 improves AF conditions in LKB1 knockout mice, further highlighting its anti-arrhythmic potential. Our findings elucidate the mechanistic role of circNAB1 in AF pathogenesis and suggest its therapeutic implications for cardiac remodeling-associated disorders.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Muhammad Rafiq
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Hui Yuan
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Xiangmin Li
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| | - Sheng Wang
- Department of AnesthesiologyBeijing Anzhen HospitalCapital Medical UniversityBeijing100029China
| | - Jun Wu
- Toronto General Research InstituteUniversity Health NetworkDepartment of PhysiologyUniversity of TorontoTorontoM5G 2C4Canada
| | - Jinfeng Wei
- Department of AnesthesiologyGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhouGuangdong510080China
| | - Ren‐Ke Li
- Toronto General Research InstituteUniversity Health NetworkDepartment of PhysiologyUniversity of TorontoTorontoM5G 2C4Canada
| | - Huiming Guo
- Department of AnesthesiologyGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhouGuangdong510080China
| | - Burton B Yang
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoM4N3M5Canada
| |
Collapse
|
3
|
Alabere HO, Taylor AD, Miller BR, Nohoesu R, Nicoletti R, Mogus J, Meadows EM, Hollander JM. Noncoding RNA as potential therapeutics to rescue mitochondrial dysfunction in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2025; 328:H846-H864. [PMID: 40019197 DOI: 10.1152/ajpheart.00774.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
Noncoding RNAs (ncRNAs) are critical regulators of mitochondrial function in cardiovascular diseases. Several studies have explored the manipulation of ncRNAs in mitochondrial dysfunction in different cardiovascular disease contexts, however, there is a dearth of information on the exploration of these noncoding RNAs as actual therapeutics to ameliorate cardiovascular diseases. This systematic review examines the roles of various ncRNAs in modulating mitochondrial dysfunction across major cardiovascular diseases and how they can be targeted to the mitochondria. A comprehensive literature search was conducted using Web of Science and Scopus databases, following the PRISMA guidelines. Original research articles in the English language, focusing on ncRNAs and mitochondrial dysfunction in specific cardiovascular diseases, were eligible for inclusion. A total of 76 studies were included in the systematic review with up to 100 ncRNAs identified as therapeutic biomarkers. The identified ncRNAs participate in regulating mitochondrial processes including oxidative phosphorylation (OXPHOS), fission/fusion dynamics, apoptosis, and calcium handling in cardiovascular diseases. Mitochondrial targeting moieties including mitochondrial targeting cell-penetrating peptides, mitochondrial targeting liposomes, and aptamers can be conjugated to ncRNAs and delivered to the heart via various injection routes including the pericardium or the myocardium. However, significant challenges remain in developing effective delivery methods to modulate these ncRNAs in vivo.
Collapse
Affiliation(s)
- Hafsat O Alabere
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Brianna R Miller
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Remi Nohoesu
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Roxy Nicoletti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Joshua Mogus
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Ethan M Meadows
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
4
|
You Q, Yu J, Pan R, Feng J, Guo H, Liu B. Decoding the regulatory roles of circular RNAs in cardiac fibrosis. Noncoding RNA Res 2025; 11:115-130. [PMID: 39759175 PMCID: PMC11697406 DOI: 10.1016/j.ncrna.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the primary cause of death globally. The evolution of nearly all types of CVDs is characterized by a common theme: the emergence of cardiac fibrosis. The precise mechanisms that trigger cardiac fibrosis are still not completely understood. In recent years, a type of non-coding regulatory RNA molecule known as circular RNAs (circRNAs) has been reported. These molecules are produced during back splicing and possess significant biological capabilities, such as regulating microRNA activity, serving as protein scaffolds and recruiters, competing with mRNA, forming circR-loop structures to modulate transcription, and translating polypeptides. Furthermore, circRNAs exhibit a substantial abundance, notable stability, and specificity of tissues, cells, and time, endowing them with the potential as biomarkers, therapeutic targets, and therapeutic agents. CircRNAs have garnered growing interest in the field of CVDs. Recent investigations into the involvement of circRNAs in cardiac fibrosis have yielded encouraging findings. This study aims to provide a concise overview of the existing knowledge about the regulatory roles of circRNAs in cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaming Feng
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Yuan Z, Huang S, Jin X, Li S. Circular RNAs in Cardiovascular Diseases: Molecular Mechanisms, Therapeutic Advances, and Innovations. Genes (Basel) 2024; 15:1423. [PMID: 39596623 PMCID: PMC11593509 DOI: 10.3390/genes15111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as promising therapeutic targets due to their unique covalently closed-loop structures and their regulatory roles in gene expression. Despite their potential, challenges in circRNA-based therapies include ensuring stability, tissue specificity, and efficient intracellular delivery. This review explores the implications of circRNAs in cardiovascular diseases (CVDs), providing an overview of their biogenesis, molecular mechanisms, and roles in disease pathology. In addition to discussing molecular features, this review highlights therapeutic advances, including small-molecule drugs targeting circRNAs, synthetic circRNA sponges, and innovations in drug delivery systems that enhance the effectiveness of these therapies. Finally, current challenges and future directions are addressed, emphasizing the need for continued research to fully unlock the therapeutic potential of circRNA-based strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Zheng Yuan
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaoyuan Huang
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| |
Collapse
|
6
|
Du WW, Zhou C, Yang H, Wen S, Chen Y, Chen EX, Yang XH, Li F, Du KY, Yuan H, Ye T, Qadir J, Yang BB. Aggravated Ulcerative Colitis via circNlgn-Mediated Suppression of Nuclear Actin Polymerization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0441. [PMID: 39183944 PMCID: PMC11342054 DOI: 10.34133/research.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Colitis is a chronic bowel disease characterized by damage to the lining of the large intestine, with its precise underlying causes remaining incompletely understood. In this study, we provide evidence that circular RNA circNlgn plays a pivotal role in promoting the development of colitis. Colitis patients produce significant higher levels of circNlgn. Transgenic mice expressing circNlgn exhibit heightened susceptibility to colitis development and progression, primarily attributed to the presence of the protein isoform Nlgn173 encoded by circNlgn. Nlgn173 undergoes translocation into cell nuclei, where it interacts with actin, impeding the binding of actin-related protein 2 and 3 (Arp2/3) complex to actin molecules. Consequently, this leads to a reduction in actin polymerization. Mechanistically, Nlgn173 enhances tyrosine-53 phosphorylation of nuclear actin, diminishing its capacity to interact with the Arp2/3 complex and causing a decrease in filamentous actin levels. These alterations in actin dynamics result in inhibited cell cycle progression, increased apoptosis, and decreased proliferation of colonic epithelial cells, thereby exacerbating colitis development and progression. In contrast, the silencing of circNlgn or the targeted inhibition of Nlgn173 translation and nuclear translocation leads to the promotion of nuclear actin polymerization, enhanced cell survival, and reduced apoptosis and ultimately improves the outcome of colitis in vivo. Interestingly, nuclear actin polymerization is highly related with expression of PIAS3, which modulates signal transducer and activator of transcription 3 and NF-κB activity in colitis. Strategies such as circNlgn knockdown and targeting nuclear actin polymerization of the colonic epithelium may explore a novel avenue for acute ulcerative colitis clinical intervention.
Collapse
Affiliation(s)
- William W. Du
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Chi Zhou
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Colorectal Surgery,
Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,
Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuoyang Wen
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Yu Chen
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine,
University of Kentucky, Lexington, KY, USA
| | - Feiya Li
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Kevin Y. Du
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Ting Ye
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Javeria Qadir
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Burton B. Yang
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
8
|
Yijian L, Weihan S, Lin Y, Heng Z, Yu W, Lin S, Shuo M, Mengyang L, Jianxun W. CircNCX1 modulates cardiomyocyte proliferation through promoting ubiquitination of BRG1. Cell Signal 2024; 120:111193. [PMID: 38679350 DOI: 10.1016/j.cellsig.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In mammal, the myocardium loss cannot be recovered spontaneously due to the negligible proliferation ability of mature mammalian cardiomyocyte. However, accumulated evidence has shown that terminally differentiated mammalian cardiomyocyte also has proliferation potency, which can be mediated by several mechanisms. Here, we reported that circNCX1, the most abundant circular RNA in mammalian hearts, can affect the proliferation of murine cardiomyocytes. The level of circNCX1 is significantly elevated during heart development. Forced expression of circNCX1 inhibits cardiomyocyte proliferation, while silencing of endogenous circNCX1 in cardiomyocyte shows reversed effect in vitro. Mechanistically, circNCX1 functions via negatively regulating transcription activator BRG1. It bridges BRG1 and FBXW7 to enhance the ubiquitination and degradation of BRG1, decreasing the expression of BMP10 to lead cell cycle arrest. In summary, our study first revealed that circNCX1 is a modulator of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Lu Yijian
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Sun Weihan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Ye Lin
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhang Heng
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wang Yu
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Song Lin
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Miao Shuo
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Li Mengyang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Wang Jianxun
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Olson SR, Tang WHW, Liu CF. Non-Coding Ribonucleic Acids as Diagnostic and Therapeutic Targets in Cardiac Fibrosis. Curr Heart Fail Rep 2024; 21:262-275. [PMID: 38485860 PMCID: PMC11090942 DOI: 10.1007/s11897-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW Cardiac fibrosis is a crucial juncture following cardiac injury and a precursor for many clinical heart disease manifestations. Epigenetic modulators, particularly non-coding RNAs (ncRNAs), are gaining prominence as diagnostic and therapeutic tools. RECENT FINDINGS miRNAs are short linear RNA molecules involved in post-transcriptional regulation; lncRNAs and circRNAs are RNA sequences greater than 200 nucleotides that also play roles in regulating gene expression through a variety of mechanisms including miRNA sponging, direct interaction with mRNA, providing protein scaffolding, and encoding their own products. NcRNAs have the capacity to regulate one another and form sophisticated regulatory networks. The individual roles and disease relevance of miRNAs, lncRNAs, and circRNAs to cardiac fibrosis have been increasingly well described, though the complexity of their interrelationships, regulatory dynamics, and context-specific roles needs further elucidation. This review provides an overview of select ncRNAs relevant in cardiac fibrosis as a surrogate for many cardiac disease states with a focus on crosstalk and regulatory networks, variable actions among different disease states, and the clinical implications thereof. Further, the clinical feasibility of diagnostic and therapeutic applications as well as the strategies underway to advance ncRNA theranostics is explored.
Collapse
Affiliation(s)
- Samuel R Olson
- Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chia-Feng Liu
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
10
|
Yuan L, Wang T, Duan J, Zhou J, Li N, Li G, Zhou H. Expression Profiles and Bioinformatic Analysis of Circular RNAs in Db/Db Mice with Cardiac Fibrosis. Diabetes Metab Syndr Obes 2024; 17:2107-2120. [PMID: 38799279 PMCID: PMC11128257 DOI: 10.2147/dmso.s465588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Cardiac fibrosis is one of the important causes of heart failure and death in diabetic cardiomyopathy (DCM) patients. Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes and have high stability. Their role in myocardial fibrosis with diabetic cardiomyopathy (DCM) remain to be fully elucidated. This study aimed to understand the expression profiles of circRNAs in myocardial fibrosis with DCM, exploring the possible biomarkers and therapeutic targets for DCM. Methods At 21 weeks of age, db/db mice established the type 2 DCM model measured by echocardiography, and the cardiac tissue was extracted for Hematoxylin-eosin, Masson's trichrome staining, and transmission electron microscopy. Subsequently, the expression profile of circRNAs in myocardial fibrosis of db/db mice was constructed using microarray hybridization and verified by real-time quantitative polymerase chain reaction. A circRNA-microRNA-messenger RNA coexpression network was constructed, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were done. Results Compared with normal control mice, db/db mice had 77 upregulated circRNAs and 135 downregulated circRNAs in their chromosomes (fold change ≥1.5, P ≤ 0.05). Moreover, the enrichment analysis of circRNA host genes showed that these differentially expressed circRNAs were mainly involved in mitogen-activated protein kinase signaling pathways. CircPHF20L1, circCLASP1, and circSLC8A1 were the key circRNAs. Moreover, circCLASP1/miR-182-5p/Wnt7a, circSLC8A1/miR-29b-1-5p/Col12a1, and most especially circPHF20L1/miR-29a-3p/Col6a2 might be three novel axes in the development of myocardial fibrosis in DCM. Conclusion The findings will provide some novel circRNAs and molecular pathways for the prevention or clinical treatment of DCM through intervention with specific circRNAs.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Ting Wang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Jinsheng Duan
- Department of Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Guizhi Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| |
Collapse
|
11
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 283.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Wei L, Liu L, Bai M, Ning X, Sun S. CircRNAs: versatile players and new targets in organ fibrosis. Cell Commun Signal 2023; 21:90. [PMID: 37131173 PMCID: PMC10152639 DOI: 10.1186/s12964-023-01051-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 05/04/2023] Open
Abstract
Organ fibrosis can occur in virtually all major organs with relentlessly progressive and irreversible progress, ultimately resulting in organ dysfunction and potentially death. Unfortunately, current clinical treatments cannot halt or reverse the progression of fibrosis to end-stage organ failure, and thus, advanced antifibrotic therapeutics are urgently needed. In recent years, a growing body of research has revealed that circular RNAs (circRNAs) play pivotal roles in the development and progression of organ fibrosis through highly diverse mechanisms of action. Thus, manipulating circRNAs has emerged as a promising strategy to mitigate fibrosis across different organ types. In this review, we systemically summarize the current state of knowledge about circRNA biological properties and the regulatory mechanisms of circRNAs. A comprehensive overview of major fibrotic signaling pathways and representative circRNAs that are known to modulate fibrotic signals are outlined. Then, we focus on the research progress of the versatile functional roles and underlying molecular mechanisms of circRNAs in various fibrotic diseases in different organs, including the heart, liver, lung, kidney and skin. Finally, we offer a glimpse into the prospects of circRNA-based interference and therapy, as well as their utilization as biomarkers in the diagnosis and prognosis of fibrotic diseases. Video abstract.
Collapse
Affiliation(s)
- Lei Wei
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Limin Liu
- School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710032, Shaanxi, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Wang J. Editorial: Biomarkers and therapeutic targets in the pathogenesis of neurodegenerative diseases: Functions, implications, and perspectives. Front Mol Neurosci 2023; 16:1167747. [PMID: 36998508 PMCID: PMC10043373 DOI: 10.3389/fnmol.2023.1167747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
|