1
|
Cerqueira-Nunes M, Monteiro C, Galhardo V, Cardoso-Cruz H. Inflammatory pain modifies reward preferences from larger delayed to smaller immediate rewards in male rats. Neurosci Lett 2025; 852:138183. [PMID: 40049359 DOI: 10.1016/j.neulet.2025.138183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Self-control underlies goal-directed behavior in both humans and rodents. The ability to balance immediate and delayed gratification is essential for fine-tuning decision-making processes to achieve optimal rewards. Although delayed gratification has been extensively studied using human neuropsychological assessments, brain imaging techniques, and preclinical research, the impact of chronic pain on these processes remains poorly understood. In this study, we successfully trained male rats to perform a custom delayed gratification task (DGt) to evaluate time-reward gratification associations. The task required rats to choose between two levers associated with distinct schedules of reward delivery and magnitude. Behavioral performance was assessed within subjects following the induction of inflammatory chronic pain using the complete Freund's adjuvant (CFA) model. Our findings revealed that CFA-treated rats developed mechanical allodynia and demonstrated a strong preference for small and immediate rewards. In contrast, saline-treated control rats exhibited a more balanced choice profile, indicative of intact self-control. Collectively, these results offer novel insights into how chronic inflammatory pain disrupts time-reward preferences and impairs self-control mechanisms.
Collapse
Affiliation(s)
- Mariana Cerqueira-Nunes
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Research Group, Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental, Universidade do Porto. Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; Programa doutoral em Neurociências (PDN), FMUP. Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Research Group, Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental, Universidade do Porto. Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Research Group, Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental, Universidade do Porto. Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Research Group, Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental, Universidade do Porto. Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
2
|
Ramírez-Maestre C, Barrado-Moreno V, Esteve R, Serrano-Íbañez ER, de la Vega R, Ruiz-Párraga GT, Fernández-Baena M, Jensen MP, López-Martínez AE. Vulnerability Factors, Adjustment, and Opioid Misuse in Chronic Noncancer Pain Individuals. THE JOURNAL OF PAIN 2024; 25:104606. [PMID: 38871145 DOI: 10.1016/j.jpain.2024.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Several person variables predate injury or pain onset that increase the probability of maladjustment to pain and opioid misuse. The aim of this study was to evaluate the role of 2 diathesis variables (impulsiveness and anxiety sensitivity [AS]) in the adjustment of individuals with chronic noncancer pain and opioid misuse. The sample comprised 187 individuals with chronic noncancer pain. The hypothetical model was tested using correlation and structural equation modeling analyses. The results show a significant association between impulsiveness and AS and all the maladjustment variables, and between impulsiveness and AS and opioid misuse and craving. However, although the correlation analysis showed a significant association between adjustment to pain and opioid misuse, the structural equation modeling analysis showed a nonsignificant association between them (as latent variables). The findings support the hypothesis that both impulsiveness and AS are vulnerability factors for maladaptive adjustment to chronic pain and opioid misuse. PERSPECTIVE: This article adds to the empirical literature by including AS and impulsiveness as antecedent variables in a model of dual vulnerability to chronic pain maladjustment and opioid misuse. The findings suggest the potential utility of assessing both factors in individuals in the first stages of chronic pain.
Collapse
Affiliation(s)
- Carmen Ramírez-Maestre
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - Victoria Barrado-Moreno
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain
| | - Rosa Esteve
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Elena R Serrano-Íbañez
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Rocío de la Vega
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Gema T Ruiz-Párraga
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Alicia E López-Martínez
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Málaga, Andalucía Tech, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
3
|
Chronic pain causes Tau-mediated hippocampal pathology and memory deficits. Mol Psychiatry 2022; 27:4385-4393. [PMID: 36056171 DOI: 10.1038/s41380-022-01707-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Persistent pain has been recently suggested as a risk factor for dementia. Indeed, chronic pain is frequently accompanied by maladaptive brain plasticity and cognitive deficits whose molecular underpinnings are poorly understood. Despite the emerging role of Tau as a key regulator of neuronal plasticity and pathology in diverse brain disorders, the role of Tau has never been studied in the context of chronic pain. Using a peripheral (sciatic) neuropathy to model chronic pain in mice-spared nerve injury (SNI) for 4 months-in wildtype as well as P301L-Tau transgenic mice, we hereby demonstrate that SNI triggers AD-related neuropathology characterized by Tau hyperphosphorylation, accumulation, and aggregation in hippocampus followed by neuronal atrophy and memory deficits. Molecular analysis suggests that SNI inhibits autophagy and reduces levels of the Rab35, a regulator of Tau degradation while overexpression of Rab35 or treatment with the analgesic drug gabapentin reverted the above molecular changes leading to neurostructural and memory recovery. Interestingly, genetic ablation of Tau blocks the establishment of SNI-induced hippocampal morphofunctional deficits supporting the mediating role of Tau in SNI-evoked hippocampal pathology and memory impairment. These findings reveal that exposure to chronic pain triggers Tau-related neuropathology and may be relevant for understanding how chronic pain precipitates memory loss leading to dementia.
Collapse
|
4
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Sosa MK, Boorman DC, Keay KA. Sciatic nerve injury rebalances the hypothalamic-pituitary-adrenal axis in rats with persistent changes to their social behaviours. J Neuroendocrinol 2022; 34:e13131. [PMID: 35487591 PMCID: PMC9286784 DOI: 10.1111/jne.13131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Increased glucocorticoids characterise acute pain responses, but not the chronic pain state, suggesting specific modifications to the hypothalamic-pituitary-adrenal (HPA)-axis preventing the persistent nature of chronic pain from elevating basal glucocorticoid levels. Individuals with chronic pain mount normal HPA-axis responses to acute stressors, indicating a rebalancing of the circuits underpinning these responses. Preclinical models of chronic neuropathic pain generally recapitulate these clinical observations, but few studies have considered that the underlying neuroendocrine circuitry may be altered. Additionally, individual differences in the behavioural outcomes of these pain models, which are strikingly similar to the range of behavioural subpopulations that manifest in response to stress, threat and motivational cues, may also be reflected in divergent patterns of HPA-axis activity, which characterises these other behavioural subpopulations. We investigated the effects of sciatic nerve chronic constriction injury (CCI) on adrenocortical and hypothalamic markers of HPA-axis activity in the subpopulation of rats showing persistent changes in social interactions after CCI (Persistent Effect) and compared them with rats that do not show these changes (No Effect). Basal plasma corticosterone did not change after CCI and did not differ between groups. However, adrenocortical sensitivity to adrenocorticotropic hormone (ACTH) diverged between these groups. No Effect rats showed large increases in basal plasma ACTH with no change in adrenocortical melanocortin 2 receptor (MC2 R) expression, whereas Persistent Effect rats showed modest decreases in plasma ACTH and large increases in MC2 R expression. In the paraventricular nucleus of the hypothalamus of Persistent Effect rats, single labelling revealed significantly increased numbers of corticotropin releasing factor (CRF) +ve and glucocorticoid receptor (GR) +ve neurons. Double-labelling revealed fewer GR +ve CRF +ve neurons, suggesting a decreased hypothalamic sensitivity of CRF neurons to circulating corticosterone in Persistent Effect rats. We suggest that in addition to rebalancing the HPA-axis, the increased CRF expression in Persistent Effect rats contributes to changes in complex behaviours, and in particular social interactions.
Collapse
Affiliation(s)
- M. Karmina Sosa
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Damien C. Boorman
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Kevin A. Keay
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
6
|
Serrano NE, Saputra SG, Íbias J, Company M, Nazarian A. Pain-induced impulsivity is sexually dimorphic and mu-opioid receptor sensitive in rats. Psychopharmacology (Berl) 2021; 238:3447-3462. [PMID: 34427720 DOI: 10.1007/s00213-021-05963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Pain sensation can negatively impact cognitive function, including impulsivity. Pain-induced changes in impulsivity can contribute to development of psychiatric comorbidities found in those with chronic pain conditions. The goal of this study was to determine whether complete Freund's adjuvant (CFA)-induced pain manipulation enhances impulsivity in rats. Whether the pain-induced impulsivity is sexually dimorphic, and if mu-opioid receptors play a role in these processes. METHODS Male and female rats were screened for trait impulsivity and designated as high or low impulsive using a delay discounting task. Rats then received a hind paw injection of CFA, and their impulsivity was assessed for 16 days. The effects of morphine on impulsivity were also examined. In a separate experiment, rats were pretreated with beta-funaltrexamine (β-FNA) to determine the role of mu-opioid receptors on impulsivity. RESULTS CFA treatment increased impulsivity in males and females. The onset of CFA-induced impulsivity was faster in high impulsive females than males. Morphine blocked CFA-induced impulsivity in both sexes in a dose- and time-dependent manner. β-FNA prevented the actions of morphine on CFA-induced impulsivity in high impulsive males, but not high impulsive females. Moreover, β-FNA increased CFA-induced impulsivity in morphine naïve males, but not females. CONCLUSION These findings demonstrate unique sex differences in CFA-induced impulsivity, response to morphine, and the impact of mu-opioid receptors. A better understanding of cognitive deficits and their mechanisms can provide insight into the development of substance abuse and psychiatric comorbidities that occur in people with chronic pain.
Collapse
Affiliation(s)
- Nidia Espinoza Serrano
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Samuel G Saputra
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Javier Íbias
- Departamento de Metodologίa de Las Ciencias del Comportamiento, Facultad de Psicologίa, Universidad Nacional de Educacίon a Distancia (UNED), 28040, Madrid, Spain
| | - Matthew Company
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
7
|
Marques Miranda C, de Lima Campos M, Leite-Almeida H. Diet, body weight and pain susceptibility - A systematic review of preclinical studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100066. [PMID: 34195483 PMCID: PMC8237587 DOI: 10.1016/j.ynpai.2021.100066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Obesity has been associated with increased chronic pain susceptibility but causes are unclear. In this review, we systematize and analyze pain outcomes in rodent models of obesity as these can be important tools for mechanistic studies. Studies were identified using MEDLINE/PubMed and Scopus databases using the following search query: (((pain) OR (nociception)) AND (obesity)) AND (rat OR (mouse) OR (rodent))). From each eligible record we extracted the following data: species, strain, sex, pain/obesity model and main behavioral readouts. Out of 695 records 33 were selected for inclusion. 27 studies assessed nociception/acute pain and 17 studies assessed subacute or chronic pain. Overall genetic and dietary models overlapped in pain-related outcomes. Most acute pain studies reported either decreased or unaltered responses to noxious painful stimuli. However, decreased thresholds to mechanical innocuous stimuli, i.e. allodynia, were frequently reported. In most studies using subacute and chronic pain models, namely of subcutaneous inflammation, arthritis and perineural inflammation, decreased thresholds and/or prolonged pain manifestations were reported in obesity models. Strain comparisons and longitudinal observations indicate that genetic factors and the time course of the pathology might account for some of the discrepancies observed across studies. Two studies reported increased pain in animals subjected to high fat diet in the absence of weight gain. Pain-related outcomes in experimental models and clinical obesity are aligned indicating that the rodent can be an useful tool to study the interplay between diet, obesity and pain. In both cases weight gain might represent only a minor contribution to abnormal pain manifestation.
Collapse
Affiliation(s)
- Carolina Marques Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana de Lima Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Esteves M, Moreira PS, Sousa N, Leite-Almeida H. Assessing Impulsivity in Humans and Rodents: Taking the Translational Road. Front Behav Neurosci 2021; 15:647922. [PMID: 34025369 PMCID: PMC8134540 DOI: 10.3389/fnbeh.2021.647922] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Impulsivity is a multidimensional construct encompassing domains of behavioral inhibition as well as of decision making. It is often adaptive and associated with fast responses, being in that sense physiological. However, abnormal manifestations of impulsive behavior can be observed in contexts of drug abuse and attention-deficit/hyperactivity disorder (ADHD), among others. A number of tools have therefore been devised to assess the different facets of impulsivity in both normal and pathological contexts. In this narrative review, we systematize behavioral and self-reported measures of impulsivity and critically discuss their constructs and limitations, establishing a parallel between assessments in humans and rodents. The first rely on paradigms that are typically designed to assess a specific dimension of impulsivity, within either impulsive action (inability to suppress a prepotent action) or impulsive choice, which implies a decision that weighs the costs and benefits of the options. On the other hand, self-reported measures are performed through questionnaires, allowing assessment of impulsivity dimensions that would be difficult to mimic in an experimental setting (e.g., positive/negative urgency and lack of premeditation) and which are therefore difficult (if not impossible) to measure in rodents.
Collapse
Affiliation(s)
- Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| |
Collapse
|
9
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
10
|
Cunha AM, Guimarães MR, Kokras N, Sotiropoulos I, Sousa N, Almeida A, Dalla C, Leite-Almeida H. Mesocorticolimbic monoamines in a rodent model of chronic neuropathic pain. Neurosci Lett 2020; 737:135309. [PMID: 32818589 DOI: 10.1016/j.neulet.2020.135309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 11/25/2022]
Abstract
Chronic pain manifests in multiple disorders and is highly debilitating. While its pathophysiology is not fully understood, the involvement of the mesocorticolimbic monoaminergic systems have been shown to play a critical role in chronic pain emergence and/or maintenance. In this study, we analyzed the levels of monoamines dopamine (DA), noradrenaline (NA) and serotonin (5-HT) in mesocorticolimbic areas - medial prefrontal cortex, orbitofrontal cortex, striatum, nucleus accumbens and amygdala - 1 month after a neuropathic lesion, Spared Nerve Injury (SNI). In SNI animals, were observed a marginal decrease of DA and 5-HT in the striatum and a rightward shift in the levels of NA in the nucleus accumbens. While mesocorticolimbic monoamines might be relevant for chronic pain pathophysiology its content appears to be relatively unaffected in our experimental conditions.
Collapse
Affiliation(s)
- Ana Margarida Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Rafael Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
11
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|