1
|
Raff H, Hainsworth KR, Woyach VL, Weihrauch D, Wang X, Dean C. Probiotic and high-fat diet: effects on pain assessment, body composition, and cytokines in male and female adolescent and adult rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R123-R132. [PMID: 38780441 PMCID: PMC11444502 DOI: 10.1152/ajpregu.00082.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high-fat diet (HFD) - 45% kcal from fat from weaning), we determined the effect of a single-strain dietary probiotic [Lactiplantibacillus plantarum 299v (Lp299v) from weaning] on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male versus female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many noninteracting main effects of age, diet, and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared with placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on an HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or a different etiology of pain. A major strength of our study was that a single-strain probiotic had a wide range of inhibiting effects on most proinflammatory cytokines. The positive effect of the probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.NEW & NOTEWORTHY A single-strain probiotic (Lp299v) had a wide range of inhibiting effects on most proinflammatory cytokines (especially IL12p70) measured in this high-fat diet rat model of mild obesity. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.
Collapse
Affiliation(s)
- Hershel Raff
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Keri R Hainsworth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Victoria L Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Xuemeng Wang
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Norris MR, Dunn SS, Aravamuthan BR, McCall JG. Spared nerve injury causes motor phenotypes unrelated to pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548155. [PMID: 37461475 PMCID: PMC10350052 DOI: 10.1101/2023.07.07.548155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Most animal models of neuropathic pain use targeted nerve injuries quantified with motor reflexive measures in response to an applied noxious stimulus. These motor reflexive measures can only accurately represent a pain response if motor function in also intact. The commonly used spared nerve injury (SNI) model, however, damages the tibial and common peroneal nerves that should result in motor phenotypes (i.e., an immobile or "flail" foot) not typically captured in sensory assays. To test the extent of these issues, we used DeepLabCut, a deep learning-based markerless pose estimation tool to quantify spontaneous limb position in C57BL/6J mice during tail suspension following either SNI or sham surgery. Using this granular detail, we identified the expected flail foot-like impairment, but we also found SNI mice hold their injured limb closer to the body midline compared to shams. These phenotypes were not present in the Complete Freunds Adjuvant model of inflammatory pain and were not reversed by multiple analgesics with different mechanisms of action, suggesting these SNI-specific phenotypes are not directly related to pain. Together these results suggest SNI causes previously undescribed phenotypes unrelated to altered sensation that are likely underappreciated while interpreting preclinical pain research outcomes.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Bhooma R. Aravamuthan
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Woyach V, Sherman K, Hillard CJ, Hopp FA, Hogan QH, Dean C. Fatty acid amide hydrolase activity in the dorsal periaqueductal gray attenuates neuropathic pain and associated dysautonomia. Am J Physiol Regul Integr Comp Physiol 2022; 323:R749-R762. [PMID: 36154489 PMCID: PMC9639763 DOI: 10.1152/ajpregu.00073.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 01/11/2023]
Abstract
The complexity of neuropathic pain and its associated comorbidities, including dysautonomia, make it difficult to treat. Overlap of anatomical regions and pharmacology of sympathosensory systems in the central nervous system (CNS) provide targets for novel treatment strategies. The dorsal periaqueductal gray (dPAG) is an integral component of both the descending pain modulation system and the acute stress response and is critically involved in both analgesia and the regulation of sympathetic activity. Local manipulation of the endocannabinoid signaling system holds great promise to provide analgesia without excessive adverse effects and also influence autonomic output. Inhibition of fatty acid amide hydrolase (FAAH) increases brain concentrations of the endocannabinoid N-arachidonoylethanolamine (AEA) and reduces pain-related behaviors in neuropathic pain models. Neuropathic hyperalgesia and reduced sympathetic tone are associated with increased FAAH activity in the dPAG, which suggests the hypothesis that inhibition of FAAH in the dPAG will normalize pain sensation and autonomic function in neuropathic pain. To test this hypothesis, the effects of systemic or intra-dPAG FAAH inhibition on hyperalgesia and dysautonomia developed after spared nerve injury (SNI) were assessed in male and female rats. Administration of the FAAH inhibitor PF-3845 into the dPAG reduces hyperalgesia behavior and the decrease in sympathetic tone induced by SNI. Prior administration of the CB1 receptor antagonist AM281, attenuated the antihyperalgesic and sympathetic effects of FAAH inhibition. No sex differences were identified. These data support an integrative role for AEA/CB1 receptor signaling in the dPAG contributing to the regulation of both hyperalgesia behavior and altered sympathetic tone in neuropathic pain.
Collapse
Affiliation(s)
- Victoria Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Katherine Sherman
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Francis A Hopp
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| |
Collapse
|
4
|
Phenotypes of Motor Deficit and Pain after Experimental Spinal Cord Injury. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060262. [PMID: 35735505 PMCID: PMC9220047 DOI: 10.3390/bioengineering9060262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Motor disability is a common outcome of spinal cord injury (SCI). The recovery of motor function after injury depends on the severity of neurotrauma; motor deficit can be reversible, at least partially, due to the innate tissue capability to recover, which, however, deteriorates with age. Pain is often a comorbidity of injury, although its prediction remains poor. It is largely unknown whether pain can attend motor dysfunction. Here, we implemented SCI for modelling severe and moderate neurotrauma and monitored SCI rats for up to 5 months post-injury to determine the profiles of both motor deficit and nociceptive sensitivity. Our data showed that motor dysfunction remained persistent after a moderate SCI in older animals (5-month-old); however, there were two populations among young SCI rats (1 month-old) whose motor deficit either declined or exacerbated even more over 4–5 weeks after identical injury. All young SCI rats displayed changed nociceptive sensitivity in thermal and mechanical modalities. The regression analysis of the changes revealed a population trend with respect to hyper- or hyposensitivity/motor deficit. Together, our data describe the phenotypes of motor deficit and pain, the two severe complications of neurotrauma. Our findings also suggest the predictability of motor dysfunction and pain syndromes following SCI that can be a hallmark for long-term rehabilitation and recovery after injury.
Collapse
|
5
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|