1
|
Zhao J, Furutani K, McGinnis A, Mathew JP, Wang F, Ji RR. Distinct roles of general anesthesia activated CeA neurons in acute versus late phase of neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612553. [PMID: 39314433 PMCID: PMC11418996 DOI: 10.1101/2024.09.11.612553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A previous study discovered a distinct population of GABAergic neurons in the ce ntral a mygdala (CeA) that can be activated by g eneral a nesthesia (CeA GA ) and exert analgesic functions (Hua et al., 2020). To independently reproduce these prior findings and to investigate the electrophysiological properties of CeA GA neurons, we first used 1.2% isoflurane to induce c-Fos activation in the mouse brain and validated the Fos expression by RNAscope in situ hybridization. Indeed, isoflurane induced robust Fos expression in CeA and these Fos + CeA GA neurons are GABAergic neurons (Vgat + ). We next used Fos-TRAP2 method (different from the CANE method used in the prior study) to label CeA GA neurons (tdTomato + ). Our ex vivo electrophysiological recordings in brain slices revealed that compared to Fos-negative CeA neurons, CeA GA neurons had significantly higher excitability and exhibited distinct patterns of action potentials. Chemogenetic activation of Fos-TRAPed CeA GA neurons was effective at increasing pain thresholds in naïve mice and mice with early-phase neuropathic pain 2 weeks after spared nerve injury (SNI). However, the same chemogenetic activation of CeA GA neurons only had modest analgesia in the late phase of SNI at 8 weeks, although it was highly effective in reducing chronic pain-associated anxiety behaviors at this stage. We found that Fos-negative CeA neurons, but not CeA GA neurons, exhibited increased excitability in the late-phase of SNI, suggesting that chronic pain causes a shift in the relative activity of the CeA microcircuit. Interestingly, Fos-negative neurons exhibited much higher expression of K + -Cl - cotransporter-2 (KCC2), and KCC2 expression was downregulated in the CeA in the late-phase of neuropathic pain. These results support the idea that targeting CeA GA neurons may provide therapeutic benefits for pain relief and chronic pain-associated anxiety. Our findings also suggest distinct roles of CeA GA neurons in regulating physiological pain, acute pain, and chronic pain with a possible involvement of KCC2.
Collapse
|
2
|
Xia Y, Li Z, Wang C, Zhang X, Li J, Zhou Q, Yang J, Chen Q, Meng X, Wang J. Dynamic alterations of locomotor activity and the microbiota in zebrafish larvae with low concentrations of lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2042-2052. [PMID: 38051486 DOI: 10.1007/s11356-023-31279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Lead (Pb) is a ubiquitous heavy metal associated with developmental and behavioral disorders. The establishment of pioneer microbiota overlaps with the development of the brain during early life, and Pb-induced developmental neurotoxicity may be partially caused by early-life microbiota dysbiosis. This study investigated the locomotor activity and the microbiota in developing zebrafish at multiple developmental time points (five days post fertilization [5 dpf], 6 dpf, and 7 dpf) under exposure to low concentrations of lead (0.05 mg/L). Time-dependent reductions in the number of activities and the average movement distance of larvae compared to the control were observed following Pb exposure. Furthermore, Pb exposure significantly altered the composition of the gut microbiota of zebrafish larvae. At the phylum level, the abundance of Proteobacteria decreased from 5 to 7 dpf, while that of Actinobacteria increased in the control groups. At the class level, the proportion of Alphaproteobacteria decreased, while that of Actinobacteria increased in the control groups. Notably, all showed the opposite trend in Pb groups. A correlation analysis between indices of locomotor activity and microbial communities revealed genus-level features that were clearly linked to the neurobehavioral performance of zebrafish. Seven genera were significantly correlated with the two performance indicators of the locomotion analysis, namely Rhodococcus, Deinococcus, Bacillus, Bosea, Bradyrhizobium, Staphylococcus, and Rhizobium. Rhizobium was dominant in zebrafish and increased in the Pb groups in a time-dependent manner. In addition, the expression levels of bdnf, trkb1, trkb2, and p75ntr changed in zebrafish from 5 to 7 dpf under Pb exposure. Collectively, these results suggest that Pb-induced neurotoxicity could potentially be treated by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Ziyi Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Chunyu Wang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China.
| |
Collapse
|
3
|
Miao C, Li X, Zhang Y. Effect of acupuncture on BDNF signaling pathways in several nervous system diseases. Front Neurol 2023; 14:1248348. [PMID: 37780709 PMCID: PMC10536971 DOI: 10.3389/fneur.2023.1248348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, the understanding of the mechanisms of acupuncture in the treatment of neurological disorders has deepened, and considerable progress has been made in basic and clinical research on acupuncture, but the relationship between acupuncture treatment mechanisms and brain-derived neurotrophic factor (BDNF) has not yet been elucidated. A wealth of evidence has shown that acupuncture exhibits a dual regulatory function of activating or inhibiting different BDNF pathways. This review focuses on recent research advances on the effect of acupuncture on BDNF and downstream signaling pathways in several neurological disorders. Firstly, the signaling pathways of BDNF and its function in regulating plasticity are outlined. Furthermore, this review discusses explicitly the regulation of BDNF by acupuncture in several nervous system diseases, including neuropathic pain, Parkinson's disease, cerebral ischemia, depression, spinal cord injury, and other diseases. The underlying mechanisms of BDNF regulation by acupuncture are also discussed. This review aims to improve the theoretical system of the mechanism of acupuncture action through further elucidation of the mechanism of acupuncture modulation of BDNF in the treatment of neurological diseases and to provide evidence to support the wide application of acupuncture in clinical practice.
Collapse
Affiliation(s)
- Chenxin Miao
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoning Li
- Department of Acupuncture, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yishu Zhang
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|