1
|
Mulatu A, Megersa N, Tolcha T, Alemu T, Vetukuri RR. Antifungal compounds, GC-MS analysis and toxicity assessment of methanolic extracts of Trichoderma species in an animal model. PLoS One 2022; 17:e0274062. [PMID: 36149851 PMCID: PMC9506656 DOI: 10.1371/journal.pone.0274062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Fungi of the genus Trichoderma have been marketed for the management of diseases of crops. However, some Trichoderma species may produce toxic secondary metabolites and it should receive due attention to ensure human safety. In this study, we investigated the in vitro antagonistic potential of T. asperellum AU131 and T. longibrachiatum AU158 as microbial biocontrol agents (MBCAs) against Fusarium xylarioides and the associated antagonistic mechanism with bioactive substances. Swiss albino mice were used to evaluate the in vivo toxicity and pathogenicity of T. asperellum AU131 and T. longibrachiatum AU158 methanolic extracts and spore suspensions, respectively, in a preliminary safety assessment for use as biofungicides. Gas Chromatography-Mass Spectrometry (GC-MS) was used to profile volatile organic metabolites (VOCs) present in the methanolic extracts. The agar diffusion assay of the methanolic extracts from both T. asperellum AU131 and T. longibrachiatum AU158 were effective at a concentration of 200 μg/mL (1×107 spores/mL), causing 62.5%, and 74.3% inhibition, respectively. A GC-MS analysis of methanolic extracts from both bioagents identified 23 VOCs which classified as alcohols, acids, sesquiterpenes, ketones and aromatic compounds. The oral administration of methanolic extracts and spore suspensions of each Trichoderma species to female Swiss albino mice over 14 days did not show any significant signs of toxicity, mortality or changes to body weight. It can be concluded that the tested spore suspensions and methanolic extracts were not pathogenic or toxic, respectively, when administered to Swiss albino mice at various doses.
Collapse
Affiliation(s)
- Afrasa Mulatu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Negussie Megersa
- Department of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Tolcha
- Department of Chemistry, Kotebe University of Education, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- * E-mail:
| |
Collapse
|
2
|
De Bock T, Zhao X, Jacxsens L, Devlieghere F, Rajkovic A, Spanoghe P, Höfte M, Uyttendaele M. Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Optimization of a culture medium based on forage palm for δ-endotoxin production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Iris Betsabee OS, José Luis SS, Juan Arturo RS, Montserrat CS. Evaluation of the toxicity and pathogenicity of biocontrol agents in murine models, chicken embryos and dermal irritation in rabbits. Toxicol Res (Camb) 2017; 6:188-198. [PMID: 30090489 PMCID: PMC6060713 DOI: 10.1039/c6tx00275g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 11/21/2022] Open
Abstract
Biological control has emerged as an alternative to the use of crop fungicides in fields and postharvest. It has already been demonstrated that strains of Candida famata, Bacillus subtilis Pla10, Meyerozyma guilliermondii, Meyerozyma caribbica and Debaryomyces hansenii are effective in controlling fungal diseases in tropical fruits. However, in order to develop applications on a field-scale, it is necessary to show that these biocontrol agents are innocuous to humans. In this study, three common toxicity studies were carried out to measure the safety of their use in food products: acute oral toxicity in adult Wistar rats, chicken embryo lethality and skin irritation studies in rabbits using concentrations of 1 and 10 mg of microbial extracts and the administration of 3 and 6 × 108 cells per mL of live cells for each one of the tested strains used for each model. The rats showed no toxic symptoms and none died during testing. The extracts and strain cells under study did not produce a life-cycle interruption in chicken embryos. For the skin irritation studies in rabbits, the substance being studied produced no skin alteration in the animals. With these results it was concluded that the lyophilized extracts in concentrations of 1 and 10 mg, as well as the cells of the studied strains in concentrations of 3 and 6 × 108 cells per mL, were safe in the studied models. Therefore, their use in controlling postharvest diseases in tropical fruits is possible. Their efficiency in controlling plagues in fields and their possible effects on humans, however, require further study.
Collapse
Affiliation(s)
- Ocampo-Suarez Iris Betsabee
- Laboratorio Integral de Investigación en Alimentos , Instituto Tecnológico de Tepic , Av. Tecnológico 2595 C. P. 63175 , Tepic , Nayarit , México .
| | - Sanchez-Salas José Luis
- Laboratorio de Microbiología y Biología Molecular del Departamento de Ciencias Químico-Biológicas , Universidad de las Américas Puebla , Ex-Hacienda Sta. Catarina Martir , C. P. 72810 , Cholula , Puebla
| | - Ragazzo-Sánchez Juan Arturo
- Laboratorio Integral de Investigación en Alimentos , Instituto Tecnológico de Tepic , Av. Tecnológico 2595 C. P. 63175 , Tepic , Nayarit , México .
| | - Calderón-Santoyo Montserrat
- Laboratorio Integral de Investigación en Alimentos , Instituto Tecnológico de Tepic , Av. Tecnológico 2595 C. P. 63175 , Tepic , Nayarit , México .
| |
Collapse
|
5
|
Konstantinovas C, de Oliveira Mendes TA, Vannier-Santos MA, Lima-Santos J. Modulation of Human Immune Response by Fungal Biocontrol Agents. Front Microbiol 2017; 8:39. [PMID: 28217107 PMCID: PMC5289975 DOI: 10.3389/fmicb.2017.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses.
Collapse
Affiliation(s)
- Cibele Konstantinovas
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz Ilhéus, Brazil
| | | | - Marcos A Vannier-Santos
- Biologia Celular Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz Salvador, Brazil
| | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz Ilhéus, Brazil
| |
Collapse
|
6
|
Chen Y, Zhang Y, Wang F, Meng W, Yang X, Li P, Jiang J, Tan H, Zheng Y. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:18-29. [DOI: 10.1016/j.msec.2016.02.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
|
7
|
Madsen AM, Zervas A, Tendal K, Matthiesen CB, Koponen IK, Hansen EW. Exposure and preventive measure to reduce high and daily exposure to Bacillus thuringiensis in potted plant production. ACTA ACUST UNITED AC 2014; 58:664-76. [PMID: 24863937 DOI: 10.1093/annhyg/meu030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The bacterium Bacillus thuringiensis (Bt) is the active organism in a variety of commercially available products used worldwide as biopesticides. Bt products are applied in large outdoor areas as well as in indoor environments. Even though it has been sold for decades, not much is known about the occupational exposure to Bt. The aim of this study was to obtain knowledge about the exposure to Bt subspecies israelensis (Bti) in a propagation section in a greenhouse, where Bti is applied hourly by a spray boom, and to test a preventive measure to reduce the exposure to airborne Bti. Furthermore, we wanted to study the exposure during work with potted plants treated earlier with Bti. Exposure to aerosols with Bti was measured repeatedly by personal and stationary samplers before and after the intervention. Bti was identified by polymerase chain reaction in air and soil samples. Personal exposure to inhalable Bti in the propagation section was 3×10(5) cfu m(-3) (median level, n = 22); the personal exposure of people working with plants treated earlier with Bti was 3200 cfu m(-3) (median level, n = 17). The highest single measure was found for the person working with the spray boom (7×10(5) cfu m(-3)) but airborne Bti was present at all sampling stations in the propagation section. Bti constituted a high share of the airborne cultivable bacteria and a smaller share of the soilborne bacteria in the propagation section. In a human cell assay, spiking an aerosol sample with a product with Bti increased the inflammatory potential of an aerosol sample from the greenhouse significantly. Based on the inflammatory potential and the high personal exposure, a cover around the spray boom was built as an attempt to reduce the daily exposure to Bti. The cover reduced the personal exposure to Bti from 3.0×10(5) cfu m(-3) to 1.8×10(4) cfu m(-3). The exposure was thus reduced by a factor 17, which is a considerable reduction. Bti was present in different particle size fractions with the majority, both before and after the intervention, in the fraction of airborne particles with an aerodynamic diameter between 1.2 and 3.0 µm. The measured occupational exposure to Bti is discussed in relation to risk evaluation.
Collapse
Affiliation(s)
- Anne Mette Madsen
- 1.National Research Centre for the Working Environment, Lerso Parkalle 105, 2100 Copenhagen, Denmark
| | - Athanasios Zervas
- 1.National Research Centre for the Working Environment, Lerso Parkalle 105, 2100 Copenhagen, Denmark
| | - Kira Tendal
- 1.National Research Centre for the Working Environment, Lerso Parkalle 105, 2100 Copenhagen, Denmark
| | - Christoffer B Matthiesen
- 1.National Research Centre for the Working Environment, Lerso Parkalle 105, 2100 Copenhagen, Denmark
| | - Ismo Kalevi Koponen
- 1.National Research Centre for the Working Environment, Lerso Parkalle 105, 2100 Copenhagen, Denmark
| | - Erik Wind Hansen
- 2.Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|