1
|
Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. Oligomeric Proanthocyanidins: An Updated Review of Their Natural Sources, Synthesis, and Potentials. Antioxidants (Basel) 2023; 12:antiox12051004. [PMID: 37237870 DOI: 10.3390/antiox12051004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
Collapse
Affiliation(s)
- Fanxuan Nie
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiamin Cui
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Sathya R, Valan Arasu M, Ilavenil S, Rejiniemon T, Vijayaraghavan P. Cosmeceutical potentials of litchi fruit and its by-products for a sustainable revalorization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Jin Y, Wu J, Hu D, Li J, Zhu W, Yuan L, Chen X, Yao J. Gamma-Aminobutyric Acid-Producing Levilactobacillus brevis Strains as Probiotics in Litchi Juice Fermentation. Foods 2023; 12:foods12020302. [PMID: 36673393 PMCID: PMC9857889 DOI: 10.3390/foods12020302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Levilactobacillus brevis strains can be isolated from traditional Chinese pickles and used as the starter cultures to improve the nutritional profiles of fermented juices. Three L. brevis strains (LBG-29, LBG-24, LBD−14) that produce high levels of gamma-aminobutyric acid (GABA; >300 mg/L) were isolated from traditional Chinese pickles. The strains showed tolerance to low pH and high bile salts and exhibited safety in vitro. Litchi juice was fermented using each strain at 37 °C for 48 h. The litchi juice was determined to be a good substrate for fermentation as the process enhanced its functional profile. Overall, cell vitality increased (above 8.7 log10 CFU/mL), the antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion-reducing antioxidant power (FRAP) were significantly increased, and the antioxidant capacity of the 2,2′-amino-di(3-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS) was decreased. There was also a significant increase in the GABA and acetic acid content after LBG-29 and LBG-24 fermentation. It was thus determined that the LBG-29 and LBG-24 strains could be used to improve beverage functionality and aid in the development of new products. This is the first report of litchi fermentation using L. brevis as a starter culture. Further research is required to elucidate the functional benefits for the human body and the nutritional and functional properties during its shelf life.
Collapse
Affiliation(s)
- Yiwen Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Dan Hu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Jun Li
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Weiwei Zhu
- Wuhan Zhongke Optics Valley Green Biotechnology Co., Ltd., Wuhan 430075, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
- Correspondence: or (X.C.); (J.Y.); Tel.: +86-551-65591399 (X.C. & J.Y.)
| | - Jianming Yao
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
- Correspondence: or (X.C.); (J.Y.); Tel.: +86-551-65591399 (X.C. & J.Y.)
| |
Collapse
|
4
|
Zhao L, Wang K, Wang K, Zhu J, Hu Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr Rev Food Sci Food Saf 2020; 19:2139-2163. [PMID: 33337091 DOI: 10.1111/1541-4337.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that is widely cultivated in more than 20 countries worldwide. It is normally consumed as fresh or processed and has become one of the most popular fruits because it has a delicious flavor, attractive color, and high nutritive value. Whole litchi fruits have been used not only as a food source but also for medicinal purposes. As a traditional Chinese medicine, litchi has been used for centuries to treat stomach ulcers, diabetes, cough, diarrhea, and dyspepsia, as well as to kill intestinal worms. Both in vitro and in vivo studies have indicated that whole litchi fruits exhibit antioxidant, hypoglycemic, hepatoprotective, hypolipidemic, and antiobesity activities and show anticancer, antiatherosclerotic, hypotensive, neuroprotective, and immunomodulatory activities. The health benefits of litchi have been attributed to its wide range of nutritional components, among which polysaccharides and polyphenols have been proven to possess various beneficial properties. The diversity and composition of litchi polysaccharides and polyphenols have vital influences on their biological activities. In addition, consuming fresh litchi and its products could lead to some adverse reactions for some people such as pruritus, urticaria, swelling of the lips, swelling of the throat, dyspnea, or diarrhea. These safety problems are probably caused by the soluble protein in litchi that could cause anaphylactic and inflammatory reactions. To achieve reasonable applications of litchi in the food, medical and cosmetics industries, this review focuses on recent findings related to the nutrient components, health benefits, and safety of litchi.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| |
Collapse
|
5
|
Lee AY, Choi JW, Yokozawa T, Cho EJ. Preventive effect of oligonol on nitric oxide and reactive oxygen species production through regulation of nuclear factor kappa B signaling pathway in RAW 264.7 macrophage cells against sodium nitroprusside. RSC Adv 2019; 9:3987-3993. [PMID: 35518095 PMCID: PMC9060530 DOI: 10.1039/c8ra08867e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 11/21/2022] Open
Abstract
Oligonol attenuated SNP-induced oxidative stress and inflammatory responsesviaregulation of the NF-κB signalling pathway in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science and Nutrition
- Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Ji Won Choi
- Technology Support Center
- Korea Food Research Institute
- Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research
- University of Toyama
- Toyama 930-8555
- Japan
| | - Eun Ju Cho
- Department of Food Science and Nutrition
- Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
6
|
Park CH, Park KH, Hong SG, Lee JS, Baek JH, Lee GI, Heo JW, Yokozawa T. Oligonol, a low-molecular-weight polyphenol derived from lychee peel, attenuates diabetes-induced pancreatic damage by inhibiting inflammatory responses via oxidative stress-dependent mitogen-activated protein kinase/nuclear factor-kappa B signaling. Phytother Res 2018; 32:2541-2550. [DOI: 10.1002/ptr.6194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research; National Institute of Horticultural and Herbal Science, Rural Development Administration; Eumseong Republic of Korea
| | - Kyeong Hun Park
- Department of Medicinal Crop Research; National Institute of Horticultural and Herbal Science, Rural Development Administration; Eumseong Republic of Korea
| | - Seung Gil Hong
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Jae Su Lee
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Jeong Hyun Baek
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Gong In Lee
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Jeong Wook Heo
- Department of Agricultural Engineering; National Institute of Agricultural Sciences, Rural Development Administration; Jeonju Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research; University of Toyama; Toyama Japan
| |
Collapse
|
7
|
Al-Dashti YA, Holt RR, Stebbins CL, Keen CL, Hackman RM. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance. J Am Coll Nutr 2018; 37:553-567. [PMID: 29718795 DOI: 10.1080/07315724.2018.1451788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors. • Mechanisms by which flavanols may enhance exercise performance include modulation of metabolism and respiration (e.g., maximal oxygen uptake, O2 cost of exercise, and energy expenditure) and reduction of oxidative stress and inflammation. These effects can result in increased skeletal muscle efficiency and endurance capacity. • Further research is needed to clarify the amount, timing, and frequency of flavanol intake for blood pressure regulation and exercise performance.
Collapse
Affiliation(s)
- Yousef A Al-Dashti
- a Department of Nutrition , University of California, Davis , Davis , California , USA
| | - Roberta R Holt
- a Department of Nutrition , University of California, Davis , Davis , California , USA
| | - Charles L Stebbins
- b Department of Internal Medicine , University of California, Davis , Davis , California , USA
| | - Carl L Keen
- a Department of Nutrition , University of California, Davis , Davis , California , USA.,b Department of Internal Medicine , University of California, Davis , Davis , California , USA
| | - Robert M Hackman
- a Department of Nutrition , University of California, Davis , Davis , California , USA
| |
Collapse
|
8
|
Bhakta HK, Paudel P, Fujii H, Sato A, Park CH, Yokozawa T, Jung HA, Choi JS. Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Arch Pharm Res 2017; 40:1314-1327. [PMID: 29027136 DOI: 10.1007/s12272-017-0970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
Abstract
Insulin resistance and protein tyrosine phosphatase 1B (PTP1B) overexpression are strongly associated with type 2 diabetes mellitus (T2DM), which is characterized by defects in insulin signaling and glucose intolerance. In a previous study, we demonstrated oligonol inhibits PTP1B and α-glucosidase related to T2DM. In this study, we examined the molecular mechanisms underlying the anti-diabetic effects of oligonol in insulin-resistant HepG2 cells. Glucose uptake was assessed using a fluorescent glucose tracer, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose, and the signaling pathway was investigated by western blotting. Oligonol significantly increased insulin-provoked glucose uptake and decreased PTP1B expression, followed by modulation of ERK phosphorylation. In addition, oligonol activated insulin receptor substrate 1 by reducing phosphorylation at serine 307 and increasing that at tyrosine 895, and enhanced the phosphorylations of Akt and phosphatidylinositol 3-kinase. Interestingly, it also reduced the expression of two key enzymes of gluconeogenesis (glucose 6-phosphatase and phosphoenolpyruvate carboxykinase), attenuated oxidative stress by scavenging/inhibiting peroxynitrite, and reactive oxygen species (ROS) generation, and augmented the expression of nuclear factor kappa B. These findings suggest oligonol improved the insulin sensitivity of insulin-resistant HepG2 cells by attenuating the insulin signaling blockade and modulating glucose uptake and production. Furthermore, oligonol attenuated ROS-related inflammation and prevented oxidative damage in our in vitro model of type 2 diabetes. These result indicate oligonol has promising potential as a treatment for T2DM.
Collapse
Affiliation(s)
- Himanshu Kumar Bhakta
- Department of Food and Life Science, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Hajime Fujii
- Amino Up Chemical Company Ltd., Sapporo, 004-0839, Japan
| | - Atsuya Sato
- Amino Up Chemical Company Ltd., Sapporo, 004-0839, Japan
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama, 930-8555, Japan
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 608-737, Republic of Korea.
| |
Collapse
|
9
|
Liu Z, Liu D, Cheng J, Mei S, Fu Y, Lai W, Wang Y, Xu Y, Vo TD, Lynch BS. Lipid-soluble green tea extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol 2017; 86:366-373. [DOI: 10.1016/j.yrtph.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/24/2022]
|
10
|
Xu P, Ying L, Wu J, Kong D, Wang Y. Safety evaluation and antihyperlipidemia effect of aqueous extracts from fermented puerh tea. Food Funct 2016; 7:2667-74. [PMID: 27181163 DOI: 10.1039/c5fo01389e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fermented puerh tea, having undergone a long period of secondary oxidization and fermentation, has become more and more popular in recent years. In the present paper, a safety evaluation of aqueous extracts from fermented puerh tea (EFPT) was performed, including an oral acute toxicity study in rats and mice, mutation tests, a mouse micronucleus test, mouse sperm abnormality test and a 30 day feeding study in rats. Meanwhile, the antihyperlipidemia effect of EFPT was investigated as well. It was found that the oral maximum tolerated dose of EFPT was more than 10.0 g per kg body weight both in rats and mice. And it had no mutagenicity as judged by negative experimental results of the mutation test. No abnormal symptoms, clinical signs or deaths have been found in rats in each group throughout the experiments. In addition, EFPT in this study showed certain effects on hyperlipidemia.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
11
|
Choi JS, Bhakta HK, Fujii H, Min BS, Park CH, Yokozawa T, Jung HA. Inhibitory evaluation of oligonol on α-glucosidase, protein tyrosine phosphatase 1B, cholinesterase, and β-secretase 1 related to diabetes and Alzheimer’s disease. Arch Pharm Res 2016; 39:409-20. [DOI: 10.1007/s12272-015-0682-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/15/2015] [Indexed: 12/01/2022]
|
12
|
Park CH, Noh JS, Fujii H, Roh SS, Song YO, Choi JS, Chung HY, Yokozawa T. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates gluco-lipotoxicity-mediated renal disorder in type 2 diabetic db/db mice. Drug Discov Ther 2015; 9:13-22. [PMID: 25788048 DOI: 10.5582/ddt.2015.01003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oligonol is a phenolic product derived from lychee fruit extract containing catechin-type monomers and oligomers of proanthocyanidins, produced by a manufacturing process which converts polyphenol polymers into oligomers. These proanthocyanidins have been reported to exhibit beneficial bioactivities in many studies, and so oligonol, a rich source of polyphenol, is expected to show favorable effects on various chronic diseases. This article summarizes recent work whether oligonol has an ameliorative effect on diabetic indices and renal disorders associated with gluco-lipotoxicity-mediated oxidative stress, inflammation, and apoptosis in db/db mice with diabetes. Oligonol was able to improve diabetic indices, prevent the development of diabetic renal disease, and preserve renal cells and the renal morphological structure via the attenuation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced oxidative stress, inhibition of advanced glycation endproduct (AGE) generation, and prevention of apoptosis-induced cell death in db/db mice, being independent of changes in the body weight or serum glucose levels. The present study provides important evidence that oligonol exhibits a pleiotropic effect, representing renoprotective effects against the development of diabetic complications in type 2 diabetic db/db mice.
Collapse
|
13
|
Choi YY, Maeda T, Fujii H, Yokozawa T, Kim HY, Cho EJ, Shibamoto T. Oligonol improves memory and cognition under an amyloid β(25-35)-induced Alzheimer's mouse model. Nutr Res 2014; 34:595-603. [PMID: 25150118 DOI: 10.1016/j.nutres.2014.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease is an age-dependent progressive neurodegenerative disorder that results in impairments of memory and cognitive function. It is hypothesized that oligonol has ameliorative effects on memory impairment and reduced cognitive functions in mice with Alzheimer's disease induced by amyloid β(25-35) (Aβ(25-35)) injection. The protective effect of an oligonol against Aβ(25-35)-induced memory impairment was investigated in an in vivo Alzheimer's mouse model. The aggregation of Aβ25-35 was induced by incubation at 37°C for 3 days before injection into mice brains (5 nmol/mouse), and then oligonol was orally administered at 100 and 200 mg/kg of body weight for 2 weeks. Memory and cognition were observed in T-maze, object recognition, and Morris water maze tests. The group injected with Aβ(25-35) showed impairments in both recognition and memory. However, novel object recognition and new route awareness abilities were dose dependently improved by the oral administration of oligonol. In addition, the results of the Morris water maze test indicated that oligonol exerted protective activity against cognitive impairment induced by Aβ(25-35). Furthermore, nitric oxide formation and lipid peroxidation were significantly elevated by Aβ(25-35), whereas oligonol treatment significantly decreased nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys. The present results suggest that oligonol improves Aβ(25-35)-induced memory deficit and cognition impairment.
Collapse
Affiliation(s)
- Yoon Young Choi
- Department of Food Science Nutrition, Pusan National University, Busan 609-735, Republic of Korea
| | | | - Hajime Fujii
- Amino Up Chemical, Co, Ltd, Sapporo 004-0839, Japan
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science Nutrition, Pusan National University, Busan 609-735, Republic of Korea.
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, Machida T, Okumura T, Nishizawa M. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 2014; 9:e93818. [PMID: 24705335 PMCID: PMC3976307 DOI: 10.1371/journal.pone.0093818] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
Abstract
Flavanol (flavan-3-ol)-rich lychee fruit extract (FRLFE) is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and the proinflammatory mediator nitric oxide (NO), which is synthesized by inducible nitric oxide synthase (iNOS). Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β)-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB). Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α). FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Ryota Yamanishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masatoshi Mori
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromitsu Murase
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toru Machida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|