1
|
Li Y, Han C, Shi L, Chen C, Zhao J, Liu T, Zhuo Q. Ninety-Day Feeding Test of Stacked DBN9936 × DBN9501 Maize on Sprague Dawley Rats. J Appl Toxicol 2025; 45:646-658. [PMID: 39639739 DOI: 10.1002/jat.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The transgenic maize DBN9936 × DBN9501, which confers resistance to insects and tolerance to herbicides, was developed via conventional cross breeding of transgenic maize DBN9936 and DBN9501. In our present study, a 90-day feeding toxicity study was conducted on Sprague Dawley rats to evaluate the safety of the maize. A total of 140 rats were randomly assigned to seven groups (n = 10/sex/group): one control group, three genetically modified (GM) groups with 17.5%, 35%, and 70% (wt/wt) GM maize, respectively, and three non-GM groups with corresponding incorporation rate of parental maize DBN318. The rats of control group were fed with AIN93G diet. The parameters including body weights, food consumption, hematology, serum biochemistry, organ weights, and histopathology were examined during the course of the study. Compared with the non-GM group or AIN93G control group, minor statistical differences were observed for some parameters in some groups, yet none of them was considered a GM-related adverse effect. In conclusion, the results demonstrated that no adverse effect was observed on rats following 90 days feeding with diet containing up to 70% GM maize. The results indicated that stacked maize DBN9936 × DBN9501 was as safe as its parental DBN318 maize.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Han
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Shi
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Zhao
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tingting Liu
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Zhuo
- Key Laboratory of Trace Element Nutrition of National Health Commission (NHC), National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Carlson AB, Mukerji P, Mathesius CA, Huang E, Herman RA, Hoban D, Thurman JD, Roper JM. DP-2Ø2216-6 maize does not adversely affect rats in a 90-day feeding study. Regul Toxicol Pharmacol 2020; 117:104779. [PMID: 32888975 DOI: 10.1016/j.yrtph.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Maize plants containing event DP-2Ø2216-6 (DP202216), which confers herbicide tolerance through expression of phosphinothricin acetyltransferase and enhanced grain yield potential via temporal modulation of the native ZMM28 protein, were developed for commercialization. To address current regulatory expectations, a mandatory 90-day rodent feeding study was conducted to support the safety assessment. Diets containing 50% by weight of ground maize grain from DP202216, non-transgenic control, and 3 non-transgenic reference varieties, were fully characterized, along with the grain, and diets were fed to Crl:CD®(SD) rats for at least 90 days. As anticipated, no biologically-relevant effects or toxicologically-significant differences were observed on survival, body weight/gain, food consumption/efficiency, clinical and neurobehavioral evaluations, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, urinalysis), organ weights, or gross and microscopic pathology parameters in rats fed a diet containing up to 50% DP202216 maize grain when compared with rats fed diets containing control or reference maize grains. The results of this study support the conclusion that maize grain from plants containing event DP-2Ø2216-6 is as safe and nutritious as maize grain not containing the event and add to the significant existing database of rodent subchronic studies demonstrating the absence of hazards from consumption of edible fractions of genetically modified plants.
Collapse
Affiliation(s)
- Anne B Carlson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Pushkor Mukerji
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | | | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Denise Hoban
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | - J Dale Thurman
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | - Jason M Roper
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA.
| |
Collapse
|
3
|
Safety evaluation of E12, W8, X17, and Y9 potatoes: Nutritional evaluation and 90-day subchronic feeding study in rats. Regul Toxicol Pharmacol 2020; 115:104712. [PMID: 32540328 DOI: 10.1016/j.yrtph.2020.104712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/22/2022]
Abstract
The nutritional and health effects of four biotech potato events, E12, W8, X17, and Y9, were evaluated in a subchronic rodent feeding study. E12 contains pSIM1278 insert DNA derived from potato and designed to down regulate potato genes through RNAi. These changes result in reduced black spot and reduced acrylamide. W8, X17, and Y9 contain the DNA inserts from pSIM1278 and pSIM1678 to further reduce acrylamide and express a gene from wild potato that protects against late blight. Rats were fed diets containing 20% cooked, dried potatoes from these four events and three conventional potato varieties. Compositional analyses of the processed potatoes and the rodent diets demonstrated comparability between the four events and their respective conventional varieties. Rats consumed the diets for 90 days and were evaluated for body weight, dietary intake, clinical signs, ophthalmology, neurobehavioral parameters, clinical pathology, organ weights, gross pathology, and histopathology. No adverse effects were observed as a result of test diet consumption. These results support the conclusion that foods containing E12, W8, X17, or Y9 potatoes are as safe, wholesome and nutritious as foods from conventional potato varieties.
Collapse
|
4
|
Xie Z, Zou S, Xu W, Liu X, Huang K, He X. No subchronic toxicity of multiple herbicide-resistant soybean FG72 in Sprague-Dawley rats by 90-days feeding study. Regul Toxicol Pharmacol 2018; 94:299-305. [PMID: 29462651 DOI: 10.1016/j.yrtph.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
Abstract
The genetically modified (GM) soybean FG72 contains two exogenous genes: p-hydroxyphenylpyruvate dioxygenase (hppd) and double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mepsps), endowing the FG72 with the glyphosate and isoxaflutole herbicides resistant abilities for presence of the 2mEPSPS and HPPD W336 proteins. A food safety assessment of GM soybean FG72 was evaluated by a 90-days feeding study using three different dietary concentrations (7.5%, 15%, or 30% w/w) of the GM soybean or its corresponding non-GM cultivar Jack fed to Sprague-Dawley rats. In our study, no biologically significant differences on animal daily clinical signs, body weights, clinical observations, hematology, clinical chemistry, histopathology on selected organs were observed within the GM soybean groups and among the GM soybean groups, the non-GM soybean groups and the control group. The results of the 90-days subchronic feeding study demonstrated that the GM soybean FG72 is as safe as the conventional non-GM soybean Jack.
Collapse
Affiliation(s)
- Zixin Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shiying Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, PR China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, PR China
| | - Xu Liu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, PR China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, PR China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, PR China.
| |
Collapse
|
5
|
Delaney B, Goodman RE, Ladics GS. Food and Feed Safety of Genetically Engineered Food Crops. Toxicol Sci 2017; 162:361-371. [DOI: 10.1093/toxsci/kfx249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bryan Delaney
- DuPont Pioneer, International, Inc, 8325 N 62nd Avenue, Johnston, IA 50131, USA
| | - Richard E Goodman
- Food Science & Technology, University of Nebraska, 1901 North 21St Street, Lincoln Nebraska, Lincoln, NE 68588, USA
| | - Gregory S Ladics
- DuPont Haskell Laboratory, 1090 Elkton Road, Newark, DE, 19711, USA
| |
Collapse
|
6
|
Tsatsakis AM, Nawaz MA, Tutelyan VA, Golokhvast KS, Kalantzi OI, Chung DH, Kang SJ, Coleman MD, Tyshko N, Yang SH, Chung G. Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food Chem Toxicol 2017. [PMID: 28645870 DOI: 10.1016/j.fct.2017.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Engineering School, Far Eastern Federal Univeristy, 37 Pushkinskaya Street, 690950, Vladivostok, Russian Federation
| | | | - Duck Hwa Chung
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Jo Kang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Geyongnam 52828, Republic of Korea
| | - Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Nadia Tyshko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
7
|
Domingo JL. Safety assessment of GM plants: An updated review of the scientific literature. Food Chem Toxicol 2016; 95:12-8. [PMID: 27317828 DOI: 10.1016/j.fct.2016.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
In a wide revision of the literature conducted in 2000, I noted that the information in scientific journals on the safety of genetically modified (GM) foods in general, and GM plants in particular, was scarce. Of course, it was not sufficient to guarantee that the consumption of these products should not mean risks for the health of the consumers. Because of the scientific interest in GM organisms (GMOs), as well as the great concern that the consumption of GM foods/plants has raised in a number of countries, I conducted two subsequent revisions (2007 and 2011) on the adverse/toxic effects of GM plants. In the present review, I have updated the information on the potential adverse health effects of GM plants consumed as food and/or feed. With only a few exceptions, the reported studies in the last six years show rather similar conclusions; that is to say, the assessed GM soybeans, rice, corn/maize and wheat would be as safe as the parental species of these plants. However, in spite of the notable increase in the available information, studies on the long-term health effects of GM plants, including tests of mutagenicity, teratogenicity and carcinogenicity seem to be still clearly necessary.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|