1
|
Bijukumar S, Murugesan T, Dhanapal AR, Mubarak SJ, Vedagiri H, Jayaraman A. Construing recombinant ZFP160 from Aspergillus terreus as pterin deaminase enzyme. Biotechnol Appl Biochem 2023; 70:2150-2162. [PMID: 37766485 DOI: 10.1002/bab.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Pterin deaminase stands as a metalloenzyme and exhibits both antitumor and anticancer activities. Therefore, this study aimed to explore the molecular function of zinc finger protein-160 (zfp160) from Aspergillus terreus with its enzyme mechanism in detail. Subsequently, preliminary molecular docking studies on zfp160 from A. terreus were done. Next, the cloning and expression of zfp160 protein were carried out. Following, protein expression was induced and purified through nickel NTA column with imidazole gradient elution. Through the Mascot search engine tool, the expressed protein of MALDI-TOF was confirmed by 32 kDa bands of SDS-PAGE. Furthermore, its enzymatic characterization and biochemical categorization were also explored. The optimum conditions for enzyme were determined to be pH 8, temperature 35°C, km 50 μm with folic acid as substrate, and Vmax of 24.16 (IU/mL). Further, in silico analysis tried to explore the interactions and binding affinity of various substrates to the modeled pterin deaminase from A. terreus. Our results revealed the binding mode of different substrate molecules with pterin deaminase using the approximate scoring functions that possibly correlate with actual experimental binding affinities. Following this, molecular dynamic simulations provided the in-depth knowledge on deciphering functional mechanisms of pterin deaminase over other drugs.
Collapse
Affiliation(s)
- Sajitha Bijukumar
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Thandeeswaran Murugesan
- Bharathiar Cancer Theranostics Research Centre (BCTRC), RUSA2.0, Bharathiar University, Coimbatore, India
| | - Anand Raj Dhanapal
- Chemistry and Bioprospecting Division, Institute of Forest Genetics and Tree Breeding (IFGTB), Indian Council of Forestry Research and Education (ICFRE), Coimbatore, Tamil Nadu, India
| | - Shoufia Jabeen Mubarak
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Hemamalini Vedagiri
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Angayarkanni Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Bharathiar Cancer Theranostics Research Centre (BCTRC), RUSA2.0, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Dell'Olmo E, Pane K, Schibeci M, Cesaro A, De Luca M, Ismail S, Gaglione R, Arciello A. Host defense peptides identified in human apolipoprotein B as natural food bio‐preservatives: Evaluation of their biosafety and digestibility. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Herman RA, Zhang JXQ. Simulated gastric fluid assay for estimating the digestibility of newly expressed proteins in GE crops: Missteps in development and interpretation. Food Chem Toxicol 2022; 169:113436. [PMID: 36165819 DOI: 10.1016/j.fct.2022.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Digestive stability of a food protein in simulated gastric fluid (SGF) continues to be considered a risk factor for allergy, even though the current science does not support this belief. Methodological shortcomings of the adaption of the SGF assay for use with purified proteins has been cited as a reason to discount results that do not conform to this belief. Missteps in conducting and interpreting the results of SGF assays are reviewed here. However, these methodological shortcomings do not invalidate the conclusion that allergenic proteins are not systematically more stable to digestion than non-allergens. The growing evidence for the dual allergen exposure hypothesis, whereby sensitization to food allergens is primarily caused by dermal and inhalation exposure to food dust, and tolerization against food allergy is primarily induced by gut exposure in food, likely explains why the digestive stability of a protein is not a risk factor for allergenicity.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Indianapolis, IN, 46268, USA.
| | - John X Q Zhang
- Corteva Agriscience, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
4
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Dumont AF. Statement on in vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants. EFSA J 2021; 19:e06350. [PMID: 33473251 PMCID: PMC7801955 DOI: 10.2903/j.efsa.2021.6350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight-of-evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement.
Collapse
|
5
|
Herman RA, Roper JM, Zhang JXQ. Evidence runs contrary to digestive stability predicting protein allergenicity. Transgenic Res 2020; 29:105-107. [PMID: 31741205 PMCID: PMC7000492 DOI: 10.1007/s11248-019-00182-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
A dogma has persisted for over two decades that food allergens are more stable to digestion compared with non-allergenic proteins. This belief has become enshrined in regulations designed to assess the allergenic risk of novel food proteins. While the empirical evidence accumulated over the last 20+ years has largely failed to confirm a correlation between digestive stability and the allergenic status of proteins, even those who accept this finding often assert that this shortfall is the result of faulty assay design rather than lack of causality. Here, we outline why digestive stability may not in fact correlate with allergenic potential.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva™ Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Jason M Roper
- Corteva™ Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| | - John X Q Zhang
- Corteva™ Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
6
|
Verhoeckx K, Bøgh KL, Dupont D, Egger L, Gadermaier G, Larré C, Mackie A, Menard O, Adel-Patient K, Picariello G, Portmann R, Smit J, Turner P, Untersmayr E, Epstein MM. The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST. Food Chem Toxicol 2019; 129:405-423. [PMID: 31063834 DOI: 10.1016/j.fct.2019.04.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/09/2023]
Abstract
The current allergenicity assessment of novel proteins is based on the EFSA GMO guidance. Recently, EFSA launched a new guidance document on allergenicity assessment of GM plants (2017). This document describes, amongst other topics, the new scientific and regulatory developments on in vitro protein digestibility tests. The EFSA GMO Panel stated that for in vitro protein digestibility tests, additional investigations are needed before any additional recommendation in the form of guidance can be provided. To this end, an interim phase is considered necessary to evaluate the revisions to the in vitro gastrointestinal digestion test, proposed by EFSA. This prompted the establishment of a joint workshop through two COST Action networks: COST Action ImpARAS and COST Acton INFOGEST. In 2017, a workshop was organised to discuss the relevance of digestion in allergenicity risk assessment and how to potentially improve the current methods and readouts. The outcome of the workshop is that there is no rationale for a clear readout that is predictive for allergenicity and we suggest to omit the digestion test from the allergenicity assessment strategy for now, and put an effort into filling the knowledge gaps as summarized in this paper first.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | | | - Lotti Egger
- Agroscope, Schwarzenburgstr. 161, 3003, Bern, Charlotte, Switzerland.
| | - Gabriele Gadermaier
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Colette Larré
- INRA UR1268 BIA, Rue de la Géraudière, BP 71627, 44316 Nantes, France.
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| | | | - Karine Adel-Patient
- UMR Service de Pharmacologie et Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, F-91191, Gif-sur-Yvette Cedex, France.
| | | | - Reto Portmann
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland.
| | - Joost Smit
- Institute of Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584CM, Utrecht, the Netherlands.
| | - Paul Turner
- Section of Paediatrics, Imperial College London, London, United Kingdom.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Michelle M Epstein
- Department of Dermatology, Experimental Allergy Laboratory, Medical University of Vienna, Waehringer Guertel 18-20 room 4P9.02, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Gao H, Jin Y, Jian DI, Olson E, Ng PKW, Gangur V. Development and validation of a mouse-based primary screening method for testing relative allergenicity of proteins from different wheat genotypes. J Immunol Methods 2018; 464:95-104. [PMID: 30395814 DOI: 10.1016/j.jim.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Wheat allergy is a major food allergy that has reached significant levels of global public health concern. Potential variation in allergenicity among different wheat genotypes is not well studied at present largely due to the unavailability of validated methods. Here, we developed and validated a novel mouse-based primary screening method for this purpose. METHODS Groups of Balb/c mice weaned on-to a plant protein-free diet were sensitized with salt-soluble protein (SSP) extracted from AABB genotype of wheat (durum, Carpio variety). After confirming clinical sensitization for anaphylaxis, mice were boosted 7 times over a 6-month period. Using a pooled-plasma mini bank, a wheat-specific IgE-inhibition (II)-ELISA was optimized. Then the relative allergenicity of SSPs from tetraploid (AABB), hexaploid (AABBDD) and diploid (DD) wheat genotypes were determined. The IC50/IC75 values were estimated using IgE inhibition curves. RESULTS The optimized II-ELISA with an inhibition time of 2.5 h had a co-efficient of variation of <2%. Primary screening for relative allergenicity demonstrated that IgE binding to AABB-SSP was significantly abolished by the other two wheat genotypes. Compared to AABB, the relative allergenicity of SSPs of AABBDD and DD were significantly lower (p < .01). Furthermore, IgE inhibition curves showed significant differences in IC50 and IC75 values among the three wheat genotypes. CONCLUSION We report a novel mouse-based primary screening method of testing relative allergenicity of wheat proteins from three different wheat genotypes for the first time. This method is expected to have broad applications in wheat allergy research.
Collapse
Affiliation(s)
- Haoran Gao
- Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, United States
| | - Yining Jin
- Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, United States
| | - Dan Ioan Jian
- Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, United States
| | - Eric Olson
- Wheat Breeding and Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Perry K W Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Venu Gangur
- Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|