1
|
Guo J, Garshick E, Si F, Tang Z, Lian X, Wang Y, Li J, Koutrakis P. Environmental Toxicant Exposure and Depressive Symptoms. JAMA Netw Open 2024; 7:e2420259. [PMID: 38958973 PMCID: PMC11222999 DOI: 10.1001/jamanetworkopen.2024.20259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Importance Recognizing associations between exposure to common environmental toxicants and mental disorders such as depression is crucial for guiding targeted mechanism research and the initiation of disease prevention efforts. Objectives To comprehensively screen and assess the associations between potential environmental toxicants and depressive symptoms and to assess whether systemic inflammation serves as a mediator. Design, Setting, and Participants A total of 3427 participants from the 2013-2014 and 2015-2016 waves of the National Health and Nutrition Examination and Survey who had information on blood or urine concentrations of environmental toxicants and depression scores assessed by the 9-item Patient Health Questionnaire (PHQ-9) were included. Statistical analysis was performed from July 1, 2023, to January 31, 2024. Exposures Sixty-two toxicants in 10 categories included acrylamide, arsenic, ethylene oxide, formaldehyde, iodine, metals, nicotine metabolites, polycyclic aromatic hydrocarbons, volatile organic compound (VOC) metabolites; and perchlorate, nitrate, and thiocyanate. Main Outcomes and Measures An exposome-wide association study and the deletion-substitution-addition algorithm were used to assess associations with depression scores (PHQ-9 ≥5) adjusted for other important covariates. A mediation analysis framework was used to evaluate the mediating role of systemic inflammation assessed by the peripheral white blood cell count. Results Among the 3427 adults included, 1735 (50.6%) were women, 2683 (78.3%) were younger than 65 years, and 744 (21.7%) were 65 years or older, with 839 (24.5%) having depressive symptoms. In terms of race and ethnicity, 570 participants (16.6%) were Mexican American, 679 (19.8%) were non-Hispanic Black, and 1314 (38.3%) were non-Hispanic White. We identified associations between 27 chemical compounds or metals in 6 of 10 categories of environmental toxicants and the prevalence of depressive symptoms, including the VOC metabolites N-acetyl-S-(2-hydroxy-3-butenyl)-l-cysteine (odds ratio [OR], 1.74 [95% CI, 1.38, 2.18]) and total nicotine equivalent-2 (OR, 1.42 [95% CI, 1.26-1.59]). Men and younger individuals appear more vulnerable to environmental toxicants than women and older individuals. Peripheral white blood cell count mediated 5% to 19% of the associations. Conclusions and Relevance In this representative cross-sectional study of adults with environmental toxicant exposures, 6 categories of environmental toxicants were associated with depressive symptoms with mediation by systemic inflammation. This research provides insight into selecting environmental targets for mechanistic research into the causes of depression and facilitating efforts to reduce environmental exposures.
Collapse
Affiliation(s)
- Jianhui Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, Massachusetts
| | - Feifei Si
- Peking University Sixth Hospital Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ziqi Tang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Xinyao Lian
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
2
|
McBride DE, Bhattacharya A, Sucharew H, Brunst KJ, Barnas M, Cox C, Altman L, Hilbert TJ, Burkle J, Westneat S, Martin KV, Parsons PJ, Praamsma ML, Palmer CD, Kannan K, Smith DR, Wright R, Amarasiriwardena C, Dietrich KN, Cecil KM, Haynes EN. Child and Adolescent Manganese Biomarkers and Adolescent Postural Balance in Marietta CARES Cohort Participants. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57010. [PMID: 38780454 PMCID: PMC11114102 DOI: 10.1289/ehp13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Manganese (Mn) plays a significant role in both human health and global industries. Epidemiological studies of exposed populations demonstrate a dose-dependent association between Mn and neuromotor effects ranging from subclinical effects to a clinically defined syndrome. However, little is known about the relationship between early life Mn biomarkers and adolescent postural balance. OBJECTIVES This study investigated the associations between childhood and adolescent Mn biomarkers and adolescent postural balance in participants from the longitudinal Marietta Communities Actively Researching Exposures Study (CARES) cohort. METHODS Participants were recruited into CARES when they were 7-9 y old, and reenrolled at 13-18 years of age. At both time points, participants provided samples of blood, hair, and toenails that were analyzed for blood Mn and lead (Pb), serum cotinine, hair Mn, and toenail Mn. In adolescence, participants completed a postural balance assessment. Greater sway indicates postural instability (harmful effect), whereas lesser sway indicates postural stability (beneficial effect). Multivariable linear regression models were conducted to investigate the associations between childhood and adolescent Mn biomarkers and adolescent postural balance adjusted for age, sex, height-weight ratio, parent/caregiver intelligence quotient, socioeconomic status, blood Pb, and serum cotinine. RESULTS CARES participants who completed the adolescent postural balance assessment (n = 123 ) were 98% White and 54% female and had a mean age of 16 y (range: 13-18 y). In both childhood and adolescence, higher Mn biomarker concentrations were significantly associated with greater adolescent sway measures. Supplemental analyses revealed sex-specific associations; higher childhood Mn biomarker concentrations were significantly associated with greater sway in females compared with males. DISCUSSION This study found childhood and adolescent Mn biomarkers were associated with subclinical neuromotor effects in adolescence. This study demonstrates postural balance as a sensitive measure to assess the association between Mn biomarkers and neuromotor function. https://doi.org/10.1289/EHP13381.
Collapse
Affiliation(s)
- Danielle E. McBride
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Amit Bhattacharya
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heidi Sucharew
- Department of Emergency Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Barnas
- Department of Psychology, Marietta College, Marietta, Ohio, USA
| | - Cyndy Cox
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lorenna Altman
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy J. Hilbert
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeff Burkle
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Susan Westneat
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Kaitlin Vollet Martin
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Meredith L. Praamsma
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Christopher D. Palmer
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Robert Wright
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Chitra Amarasiriwardena
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Kim N. Dietrich
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim M. Cecil
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erin N. Haynes
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Del Rio Naiz SC, Varela KG, de Carvalho D, Remor AP. Probucol neuroprotection against manganese-induced damage in adult Wistar rat brain slices. Toxicol Ind Health 2023; 39:638-650. [PMID: 37705340 DOI: 10.1177/07482337231201565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Manganese (Mn) is an abundant element used for commercial purposes and is essential for the proper function of biological systems. Chronic exposure to high Mn concentrations causes Manganism, a Parkinson's-like neurological disorder. The pathophysiological mechanism of Manganism remains unknown; however, it involves mitochondrial dysfunction and oxidative stress. This study assessed the neuroprotective effect of probucol, a hypolipidemic agent with anti-inflammatory and antioxidant properties, on cell viability and oxidative stress in slices of the cerebral cortex and striatum from adult male Wistar rats. Brain structure slices were kept separately and incubated with manganese chloride (MnCl2) and probucol to evaluate the cell viability and oxidative parameters. Probucol prevented Mn toxicity in the cerebral cortex and striatum, as evidenced by the preservation of cell viability observed with probucol (10 and 30 μM) pre-treatment, as well as the prevention of mitochondrial complex I inhibition in the striatum (30 μM). These findings support the protective antioxidant action of probucol, attributed to its ability to prevent cell death and mitigate Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Karina Giacomini Varela
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Diego de Carvalho
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Aline Pertile Remor
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| |
Collapse
|
4
|
Lin Y, Cai J, Liu Q, Mo X, Xu M, Zhang J, Liu S, Wei C, Wei Y, Huang S, Mai T, Tan D, Lu H, Luo T, Gou R, Zhang Z, Qin J. Sex-Specific Associations of Urinary Metals with Renal Function: a Cross-sectional Study in China. Biol Trace Elem Res 2023; 201:2240-2249. [PMID: 35793044 DOI: 10.1007/s12011-022-03349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Extensive studies have revealed the link between heavy metals and CKD. Compared to single meta-elements, mixture of metals reflect real-life metals exposure scenarios and are of interest. However, the mechanism of action of metal mixture on renal function is unclear. METHODS This study aimed to explore the potential relationship between urinary arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and chromium (Cr) contents with estimated glomerular filtration rate (eGFR) levels in 2775 participants. The levels of metals in urine were determined by inductively coupled plasma-mass spectrometry. We used linear regression models and the Bayesian kernel machine regression (BKMR) to evaluate the association between metals and eGFR levels. RESULTS In linear regression analysis, urinary As (β = 2.723, 95%CI: 0.29, 5.157) and Pb (β = 3.081, 95%CI: 1.725, 4.438) were positively associated with eGFR in the total population. In the BKMR model, a mixture of the five metals had a positive joint effect on eGFR levels, while Pb (PIP = 0.996) contributed the most to eGFR levels. Pb was positively associated with eGFR levels in the total participants and women. As was positively correlated with eGFR levels in women. Pb and eGFR levels were positively correlated when the other metals were set at 25th, 50th, and 75th percentiles. CONCLUSIONS To the best of our knowledge, all five metals mixed exposure was positively associated with eGFR. Pb showed more important effects than the other four metals in the mixture, especially in women.
Collapse
Affiliation(s)
- Yinxia Lin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jiansheng Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Qiumei Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoting Mo
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Min Xu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junling Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shuzhen Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chunmei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yanfei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shenxiang Huang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Tingyu Mai
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Dechan Tan
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Huaxiang Lu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Ruoyu Gou
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, 541004, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China.
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Neuroprotective Effect of Vitamin D on Behavioral and Oxidative Parameters of Male and Female Adult Wistar Rats Exposed to Mancozeb (manganese/zinc ethylene bis-dithiocarbamate). Mol Neurobiol 2023; 60:3724-3740. [PMID: 36940076 DOI: 10.1007/s12035-023-03298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
The constant exposure of rural workers to pesticides is a serious public health problem. Mancozeb (MZ) is a pesticide linked to hormonal, behavioral, genetic, and neurodegenerative effects, mainly related to oxidative stress. Vitamin D is a promising molecule that acts as a protector against brain aging. This study aimed to evaluate the neuroprotective role of vitamin D in adult male and female Wistar rats exposed to MZ. Animals received 40 mg/kg of MZ i.p. and 12.5 μg/kg or 25 μg/kg vitamin D by gavage, twice a week, for 6 weeks. The concentration of manganese had a significant increase in the hippocampus of both sexes and in the striatum of females, unlike zinc, which did not show a significant increase. MZ poisoning led to mitochondrial changes in brain tissues and promoted anxiogenic effects, especially in females. Alterations in antioxidant enzymes, mainly in the catalase activity were observed in intoxicated rats. Taken together, our results showed that exposure to MZ leads to the accumulation of manganese in brain tissues, and the behavior and metabolic/oxidative impairment were different between the sexes. Furthermore, the administration of Vitamin D was effective in preventing the damage caused by the pesticide.
Collapse
|
6
|
Spitznagel BD, Buchanan RA, Consoli DC, Thibert MK, Bowman AB, Nobis WP, Harrison FE. Acute manganese exposure impairs glutamatergic function in a young mouse model of Alzheimer's disease. Neurotoxicology 2023; 95:1-11. [PMID: 36621467 PMCID: PMC9998360 DOI: 10.1016/j.neuro.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Manganese (Mn) is an essential metal that serves as a cofactor for metalloenzymes important in moderating oxidative stress and the glutamate/glutamine cycle. Mn is typically obtained through the diet, but toxic overexposure can occur through other environmental or occupational exposure routes such as inhalation. Mn is known to accumulate in the brain following exposure and may contribute to the etiology of neurodegenerative disorders such as Alzheimer's disease (AD) even in the absence of acute neurotoxicity. In the present study, we used in vitro primary cell culture, ex vivo slice electrophysiology and in vivo behavioral approaches to determine if Mn-induced changes in glutamatergic signaling may be altered by genetic risk factors for AD neuropathology. Primary cortical astrocytes incubated with Mn exhibited early rapid clearance of glutamate compared to saline treated astrocytes but decreased clearance over longer time periods, with no effect of the AD genotype. Further, we found that in vivo exposure to a subcutaneous subacute, high dose of Mn as manganese chloride tetrahydrate (3 ×50 mg/kg MnCl2·4(H2O) over 7 days) resulted in increased expression of cortical GLAST protein regardless of genotype, with no changes in GLT-1. Hippocampal long-term potentiation was not altered in APP/PSEN1 mice at this age and neither was it disrupted following Mn exposure. Mn exposure did increase sensitivity to seizure onset following treatment with the excitatory agonist kainic acid, with differing responses between APP/PSEN1 and control mice. These results highlight the sensitivity of the glutamatergic system to Mn exposure. Experiments were performed in young adult APP/PSEN1 mice, prior to cognitive decline or accumulation of hallmark amyloid plaque pathology and following subacute exposure to Mn. The data support a role of Mn in pathophysiology of AD in early stages of the disease and support the need to better understand neurological consequences of Mn exposure in vulnerable populations.
Collapse
Affiliation(s)
- Brittany D Spitznagel
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David C Consoli
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Megan K Thibert
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - William P Nobis
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Ijomone OM, Iroegbu JD, Morcillo P, Ayodele AJ, Ijomone OK, Bornhorst J, Schwerdtle T, Aschner M. Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:2167-2177. [PMID: 35596948 PMCID: PMC9357062 DOI: 10.1002/tox.23583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.
Collapse
Affiliation(s)
- Omamuyovwi M. Ijomone
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Joy D. Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Patricia Morcillo
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akinyemi J. Ayodele
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olayemi K. Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Michael Aschner
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
da Silva EB, Eichwald T, Glaser V, Varela KG, Baptistella AR, de Carvalho D, Remor AP. Protective Effects of Probucol on Different Brain Cells Exposed to Manganese. Neurotox Res 2022; 40:276-285. [PMID: 35043377 DOI: 10.1007/s12640-021-00458-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Manganese (Mn) is an essential metal for many functions in the body. However, in excess, it can be neurotoxic and cause a Parkinson-like syndrome, known as manganism. Here, we aimed to identify a protective effect of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, against Mn-induced toxicity in human neuroblastoma (SH-SY5Y) and glioblastoma (C6) cell lines. The cells were incubated with increasing concentrations of Mn followed by probucol addition 1, 3, 6, and/or 24 h to assess the metal toxic doses and measure the protective effect of probucol against Mn-induced oxidative damage. Longer exposition to Mn showed decreased SH-SY5Y cellular viability in concentrations higher than 100 µM, and probucol was able to prevent this effect. The C6 cells were more sensitive to the Mn deleterious actions, decreasing the cell viability after 6 h of 500 µM Mn exposure. In addition, probucol prevents the complex I and II of the mitochondrial respiratory chain (MRC) inhibition caused by Mn and decreased the intracellular ROS production. Taken together, our results showed that Mn toxicity affects differently both cell lines and probucol has a protective effect against the oxidative imbalance in the central nervous system.
Collapse
Affiliation(s)
- Erica Blenda da Silva
- Graduada em Medicina, Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Campus de Joaçaba, SC, 89600-000, Joaçaba, Brazil
| | - Tuany Eichwald
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Campus de Joaçaba, SC, 89600-000, Joaçaba, Brazil
| | - Viviane Glaser
- Centro de Ciências Rurais, Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, SC, Curitibanos, Brazil
| | - Karina Giacomini Varela
- Graduada em Ciências Biológicas, Universidade do Oeste de Santa Catarina (UNOESC), Campus de Joaçaba, Biotério, 89600-000, Joaçaba, Brazil
| | - Antuani Rafael Baptistella
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Campus de Joaçaba, SC, 89600-000, Joaçaba, Brazil
| | - Diego de Carvalho
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Campus de Joaçaba, SC, 89600-000, Joaçaba, Brazil
| | - Aline Pertile Remor
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Campus de Joaçaba, SC, 89600-000, Joaçaba, Brazil.
| |
Collapse
|
9
|
Wang X, Shen X, Chen L, Yu Q, Xiong S, Tian K, Xie Y, Zeng R, Zhou Y. Hepatic oxidative damage and Nrf2 pathway protein changes in rats following long-term manganese exposure. Toxicol Ind Health 2021; 37:251-259. [PMID: 34078187 DOI: 10.1177/0748233721993311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated hepatic oxidative damage in rats following long-term manganese (Mn) exposure and clarified the underlying mechanisms. Forty-eight rats (SPF, male) were randomly assigned to receive low (10 mg/kg, n = 16) or high doses of Mn (50 mg/kg, n = 16) or sterilized distilled water (control group, n = 16). Rats were euthanized after 12 months, and liver Mn levels and histopathological changes were determined. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver malondialdehyde (MDA), glutathione peroxidase (GSH-PX), nuclear factor E2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinine oxidoreductase-1 (NQO1) levels were also determined. The Mn concentration and relative liver weights were significantly higher in the high-dose Mn group than in the control and low-dose Mn exposure groups. Low-dose Mn exposure resulted in mild expansion of hepatic sinuses and intact nuclei, whereas high-dose exposure led to pathological alterations in hepatocytes. High-dose Mn treatment significantly increased AST, ALT, and MDA activities and decreased GSH-PX activity. Additionally, liver Nrf2, HO-1, and NQO1 protein expression were markedly reduced by Mn exposure. Under the study conditions, long-term low-dose Mn exposure resulted in slight pathological changes in liver structure, but high-dose Mn exposure affected both liver structure and function, which might be related to the inhibition of Nrf2 expression, suppression of the transcription of its underlying antioxidant genes, and down regulation of the corresponding proteins. Consequently, the antioxidant capacity in the rat liver was weakened.
Collapse
Affiliation(s)
- Xia Wang
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Xubo Shen
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Lei Chen
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Qin Yu
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Shimin Xiong
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Kunming Tian
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Yan Xie
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Rong Zeng
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| | - Yuanzhong Zhou
- Department of Toxicology, School of Public Health, 66367Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
10
|
Gao P, Tian Y, Xie Q, Zhang L, Yan Y, Xu D. Manganese exposure induces permeability in renal glomerular endothelial cells via the Smad2/3-Snail-VE-cadherin axis. Toxicol Res (Camb) 2020; 9:683-692. [PMID: 33178429 DOI: 10.1093/toxres/tfaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential micronutrient. However, it is well established that Mn overexposure causes nervous system diseases. In contrast, there are few reports on the effects of Mn exposure on glomerular endothelium. In the present study, the potential effects of Mn exposure on glomerular endothelium were evaluated. Sprague Dawley rats were used as a model of Mn overexposure by intraperitoneal injection of MnCl2·H2O at 25 mg/kg body weight. Mn exposure decreased expression of vascular endothelial-cadherin, a key component of adherens junctions, and increased exudate from glomeruli in Sprague Dawley rats. Human renal glomerular endothelial cells were cultured with different concentration of Mn. Exposure to 0.2 mM Mn increased permeability of human renal glomerular endothelial cell monolayers and decreased vascular endothelial-cadherin expression without inducing cytotoxicity. In addition, Mn exposure increased phosphorylation of mothers against decapentaplegic homolog 2/3 and upregulated expression of zinc finger protein SNAI1, a negative transcriptional regulator of vascular endothelial-cadherin. Our data suggest Mn exposure may contribute to development of glomerular diseases by inducing permeability of glomerular endothelium.
Collapse
Affiliation(s)
- Peng Gao
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yutian Tian
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qi Xie
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Liang Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Yongjian Yan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| |
Collapse
|