1
|
Melching-Kollmuss S, Sauer UG, Gatto V, Stinchcombe S, Tinwell H. A proposal of criteria to support the EU classification on endocrine disruption for the thyroid modality and their application to four data-rich case studies. Arch Toxicol 2025:10.1007/s00204-025-04037-9. [PMID: 40347277 DOI: 10.1007/s00204-025-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/19/2025] [Indexed: 05/12/2025]
Abstract
Recently, the European Commission has implemented hazard categories to classify substances as endocrine disruptors for human health, i.e. ED HH 1 or ED HH 2, depending on the weight-of-evidence. However, specific guidance on how to differentiate between the two is unavailable. This article presents the CropLife Europe (CLE) proposal for a structured approach to support the ED HH classification for the thyroid modality. Further, the Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS) has been modified in view of the new classification. Application of the CLE proposal and the modified Thyroid-NDT-TAS is illustrated in four case studies covering active substances in plant protection products that showed thyroid- and liver-related effects in laboratory animal studies (pyrimethanil, boscalid, metribuzin, ethiprole). For all four substances, there is strong and consistent evidence that the thyroid-related endocrine activity in rats is liver enzyme induction-mediated, a mode-of-action that is of questionable relevance to humans. In vitro species comparisons (unavailable for pyrimethanil) further confirm non-relevance to humans. However, pyrimethanil (and boscalid) did not elicit developmental neurotoxicity in rats. For pyrimethanil, boscalid and ethiprole, the overall weight-of-evidence determination yields the conclusion "no ED HH via the thyroid modality". For metribuzin, category ED HH 2 may be triggered due to uncertainties related to its database. The case studies underline that expert judgement is required to assess overall effect patterns, to balance the available evidence and to conclude on classification as ED HH 1, ED HH 2 or no ED HH via the thyroid modality.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy, Animal Welfare, Neubiberg, Germany
| | - Valeria Gatto
- Regulation Agrochemicals, BASF SE, APD/ET. Li 444, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | - Stefan Stinchcombe
- Regulation Agrochemicals, BASF SE, APD/ET. Li 444, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | | |
Collapse
|
2
|
Wada K, Yamaguchi T, Tanaka H, Fujisawa T. Hepatic enzyme induction and its potential effect on thyroid hormone metabolism in the metamorphosing tadpole of Xenopus laevis (African clawed frog). J Appl Toxicol 2024; 44:1773-1783. [PMID: 39039701 DOI: 10.1002/jat.4672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Hepatic enzyme induction, an inherent defense system against xenobiotics, is known to simultaneously affect endocrine system functions in mammals under specific conditions, particularly thyroid hormone (TH) regulation. While this phenomenon has been studied extensively, the pathway leading to this indirect thyroid effect in mammals has unclear applicability to amphibians, despite the importance of amphibian species in assessing thyroid-disruptive chemicals. Here, we investigated the effects of three well-known mammalian enzyme inducers-β-naphthoflavone (BNF), pregnenolone carbonitrile (PCN), and sodium phenobarbital (NaPB)-on the gene expression of phase-I and phase-II metabolizing enzymes in Xenopus laevis tadpoles. Waterborne exposure to BNF and PCN significantly induced the expression of both phase-I (cytochrome P450, CYP) and phase-II enzymes (UDP-glucuronosyltransferase, UGT and sulfotransferase, SULT), but in different patterns, while NaPB exposure induced CYP2B expression without affecting phase-II enzymes in tadpoles, in contrast to mammals. Furthermore, an ex vivo hepatic enzyme activity assay confirmed that BNF treatment significantly increased phase-II metabolic activity (glucuronidation and sulfation) toward TH. These results suggest the potential for certain mammalian enzyme inducers to influence TH clearance in X. laevis tadpoles. Our findings provide insights into the profiles of xenosensing activity and enzyme induction in amphibians, which can facilitate a better understanding of the mechanisms of indirect effects on the thyroid system via hepatic enzyme induction in nonmammalian species.
Collapse
Affiliation(s)
- Kohei Wada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Takafumi Yamaguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Hitoshi Tanaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| |
Collapse
|
3
|
Minami K, Sato A, Tomiyama N, Ogata K, Kosaka T, Hojo H, Takahashi N, Suto H, Aoyama H, Yamada T. Prenatal test cohort of a modified rat comparative thyroid assay adding brain thyroid hormone measurements and histology but lowering group size appears able to detect disruption by sodium phenobarbital. Curr Res Toxicol 2024; 6:100168. [PMID: 38693933 PMCID: PMC11061706 DOI: 10.1016/j.crtox.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
The Comparative Thyroid Assay (CTA, USEPA) is a screening test for thyroid hormone (TH) disruption in peripheral blood of dams and offspring. Recently, we began investigating feasible improvements to the CTA by adding examination of offspring brain TH concentrations and brain histopathology. In addition, we hypothesize that the number of animals required could be reduced by 50 % while still maintaining sensitivity to characterize treatment related changes in THs. Previously, we showed that the prenatal test cohort of the modified CTA could detect 1000 ppm sodium phenobarbital (NaPB)-induced suppression of brain T3 (by 9 %) and T4 (by 33 %) with no significant changes in serum T3 and T4 (less than 8 %). In the current study we expanded the dose response in a prenatal test cohort. Pregnant SD rats (N = 10/group) were exposed to 0, 1000 or 1500 ppm NaPB in the diet from gestational days (GD) 6 to GD20. Serum THs concentrations in GD20 dams together with serum/brain THs concentrations and brain histopathology in the GD20 fetuses were examined. NaPB dose-dependently suppressed serum T3 (up to -26 %) and T4 (up to -44 %) in dams, with suppression of T3 in serum (up to -26 %) and brain (up to -18 %) and T4 in serum (up to -26 %) and brain (up to -29 %) of fetuses but without clear dose dependency. There were no remarkable findings that deviated significantly from controls in GD20 fetal brain by qualitative histopathology. Overall, the present study suggests that the prenatal test cohort of this modified CTA is able to detect the expected fetal TH disruptions by prenatal exposure to NaPB, while also reducing the number of animals used by 50 %, consistent with the results of our previous study. These findings add to the suggestion that lowering group sizes and adding endpoints may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Akira Sato
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroaki Aoyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
4
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Bomann W, Tinwell H, Jenkinson P, Kluxen FM. Metribuzin-induced non-adverse liver changes result in rodent-specific non-adverse thyroid effects via uridine 5'-diphospho-glucuronosyltransferase (UDPGT, UGT) modulation. Regul Toxicol Pharmacol 2021; 122:104884. [PMID: 33596450 DOI: 10.1016/j.yrtph.2021.104884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 11/18/2022]
Abstract
Metribuzin is a herbicide that inhibits photosynthesis and has been used for over 40 years. Its main target organ is the liver and to some extent the kidney in rats, dogs, and rabbits. Metribuzin shows a specific thyroxine (T4) profile in rat studies with T4 increases at low doses and T4 decreases at higher doses. Only the T4 decreases occur together with histopathological changes in the thyroid and weight changes of liver and thyroid. A set of experiments was conducted to investigate metribuzin's endocrine disruptor potential according to European guidance and regulations. The results indicate that a liver enzyme modulation, i.e. of the uridine 5'-diphospho-glucuronosyltransferase (UDPGT, UGT), is most likely responsible for both increased and decreased plasma thyroxine level and for thyroid histopathological observations. Animals with high T4 levels show low UGT activity, while animals with low T4 levels show high UGT activity. A causal relationship was inferred, since other potentially human-relevant mode of action (MOA) pathways were excluded in dedicated studies, i.e. inhibition of deiodinases (DIO), inhibition of thyroid peroxidase (TPO) or of the sodium importer system (NIS). This liver metabolism-associated MOA is considered not relevant for human hazard assessment, due to species differences in thyroid homeostasis between humans and rats and, more importantly, based on experimental data showing that metribuzin affects UGT activity in rat but not in human hepatocytes. Further, we discuss whether or not increased T4 levels in the rat, in the absence of histopathological changes, should be considered as adverse and therefore used as an appropriate hazard model for humans. Based on a weight of evidence approach, metribuzin should not be classified as an endocrine disruptor with regard to the thyroid modality.
Collapse
Affiliation(s)
- Werner Bomann
- Toxconsult, 9393 W 110th Street, 51 Corporate Woods, Suite 500, Overland Park, KS, 66210, USA.
| | - Helen Tinwell
- Bayer.SAS, 16 rue Jean-Marie Leclair, 69009, Lyon, France
| | | | | |
Collapse
|