1
|
Goel H, Carey M, Elshaikh A, Krinock M, Goyal D, Nadar SK. Cardioprotective and Antianginal Efficacy of Nicorandil: A Comprehensive Review. J Cardiovasc Pharmacol 2023; 82:69-85. [PMID: 37256547 DOI: 10.1097/fjc.0000000000001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
ABSTRACT Angina pectoris remains a significant burden despite advances in medical therapy and coronary revascularization. Many patients (up to 30%) with angina have normal coronary arteries, with coronary microvascular disease and/or coronary artery vasospasm being major drivers of the myocardial demand-supply mismatch. Even among patients revascularized for symptomatic epicardial coronary stenosis, recurrent angina remains highly prevalent. Medical therapy for angina currently centers around 2 disparate goals, viz secondary prevention of hard clinical outcomes and symptom control. Vasodilators, such as nitrates, have been first-line antianginal agents for decades, along with beta-blockers and calcium channel blockers. However, efficacy in symptoms control is heterogenous, depending on underlying mechanism(s) of angina in an individual patient, often necessitating multiple agents. Nicorandil (NCO) is an antianginal agent first discovered in the late 1970s with a uniquely dual mechanism of action. Like a typical nitrate, it mediates medium-large vessel vasodilation through nitric oxide. In addition, NCO has adenosine triphosphate (ATP)-dependent potassium channel agonist activity (K ATP ), mediating microvascular dilatation. Hence, it has proven effective in both coronary artery vasospasm and coronary microvascular disease, typically challenging patient populations. Moreover, emerging evidence suggests that cardiomyocyte protection against ischemia through ischemic preconditioning may be mediated through K ATP agonism. Finally, there is now fairly firm evidence in favor of NCO in terms of hard event reduction among patients with stable coronary artery disease, following myocardial infarction, and perhaps even among patients with congestive heart failure. This review aims to summarize the mechanism of action of NCO, its efficacy as an antianginal, and current evidence behind its impact on hard outcomes. Finally, we review other cardiac and emerging noncardiac indications for NCO use.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Medicine, St Luke's University Hospital, Bethlehem, PA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Matthew Carey
- Department of Medicine, St Luke's University Hospital, Bethlehem, PA
| | | | - Matthew Krinock
- Department of Medicine, St Luke's University Hospital, Bethlehem, PA
- ‡Department of Cardiology, St Luke's University Hospital, Bethlehem, PA
| | - Deepak Goyal
- Department of Cardiology, Worcestershire Acute Hospitals NHS Trust, Worcester, UK; and
| | - Sunil K Nadar
- Department of Cardiology, Dudley Group of Hospitals NHS Trust, Dudley, UK
| |
Collapse
|
2
|
Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, Kitakaze M, Kinugawa K, Kihara Y, Goto Y, Komuro I, Saiki Y, Saito Y, Sakata Y, Sato N, Sawa Y, Shiose A, Shimizu W, Shimokawa H, Seino Y, Node K, Higo T, Hirayama A, Makaya M, Masuyama T, Murohara T, Momomura SI, Yano M, Yamazaki K, Yamamoto K, Yoshikawa T, Yoshimura M, Akiyama M, Anzai T, Ishihara S, Inomata T, Imamura T, Iwasaki YK, Ohtani T, Onishi K, Kasai T, Kato M, Kawai M, Kinugasa Y, Kinugawa S, Kuratani T, Kobayashi S, Sakata Y, Tanaka A, Toda K, Noda T, Nochioka K, Hatano M, Hidaka T, Fujino T, Makita S, Yamaguchi O, Ikeda U, Kimura T, Kohsaka S, Kosuge M, Yamagishi M, Yamashina A. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure - Digest Version. Circ J 2019; 83:2084-2184. [PMID: 31511439 DOI: 10.1253/circj.cj-19-0342] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | | | - Hiroshi Ito
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Division of Biophysiological Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo
| | - Masafumi Kitakaze
- Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center
| | | | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yoshikatsu Saiki
- Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Akira Shiose
- Department of Cardiovascular Surgery, Kyushu University Graduate School of Medical Sciences
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Taiki Higo
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Atsushi Hirayama
- The Division of Cardiology, Department of Medicine, Nihon University Graduate School of Medicine
| | | | - Tohru Masuyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | - Masafumi Yano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
| | - Kenji Yamazaki
- Department of Cardiology Surgery, Tokyo Women's Medical University
| | - Kazuhiro Yamamoto
- Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University
| | | | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Masatoshi Akiyama
- Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Shiro Ishihara
- Department of Cardiology, Nippon Medical School Musashi-Kosugi Hospital
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Kitasato University Kitasato Institute Hospital
| | | | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | - Takatoshi Kasai
- Cardiovascular Respiratory Sleep Medicine, Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Mahoto Kato
- Department of Cardiovascular Medicine, Nihon University Graduate School of Medicine
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | | | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Toru Kuratani
- Department of Minimally Invasive Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kotaro Nochioka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Masaru Hatano
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | | | - Takeo Fujino
- Department of Advanced Cardiopulmonary Failure, Kyushu University Graduate School of Medical Sciences
| | - Shigeru Makita
- Department of Cardiac Rehabilitation, Saitama Medical University International Medical Center
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine and Faculty of Medicine, Kyoto University
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center
| | - Masakazu Yamagishi
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine
| | - Akira Yamashina
- Medical Education Promotion Center, Tokyo Medical University
| |
Collapse
|
3
|
Schuehly U, Ayalasomayajula S, Buchbjerg J, Pal P, Golor G, Prescott MF, Sunkara G, Hinder M, Langenickel TH. Pharmacodynamic interaction between intravenous nitroglycerin and oral sacubitril/valsartan (LCZ696) in healthy subjects. Eur J Clin Pharmacol 2018; 74:1121-1130. [PMID: 29974143 DOI: 10.1007/s00228-018-2509-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Sacubitril/valsartan (LCZ696) and nitroglycerin share the second messenger cGMP and lower blood pressure. Given the potential for co-administration of both drugs in patients with heart failure, this study was designed to investigate the potential for a pharmacodynamic drug interaction affecting blood pressure. METHODS In this double-blind, placebo-controlled, randomised, crossover study, 40 healthy subjects received sacubitril/valsartan 200 mg bid (97/103 mg bid) or placebo for 5 days. Two hours after the morning dose of sacubitril/valsartan or placebo on day 5, subjects received intravenous nitroglycerin infusion at increasing doses up to 40 μg/min or placebo. Serial measurements of blood pressure (BP), heart rate, biomarkers and sacubitril/valsartan pharmacokinetics were conducted. RESULTS Administration of nitroglycerin alone led to a dose- and time-dependent decrease in supine systolic BP (SBP) and diastolic BP (DBP) which was similar when nitroglycerin was co-administered with sacubitril/valsartan. At the highest dose of nitroglycerin, the mean (95% CI) decrease from baseline of SBP/DBP was 19.54 (- 21.99, - 17.09)/12.38 (- 13.85, - 10.92) mmHg for nitroglycerin alone compared to 22.63 (- 25.06, - 20.21)/12.94 (- 14.38, - 11.49) mmHg when co-administered with sacubitril/valsartan. Co-administration of sacubitril/valsartan and nitroglycerin did not result in further plasma cGMP increase compared to sacubitril/valsartan alone. The co-administration of nitroglycerin and sacubitril/valsartan was safe and well tolerated and did not impact the pharmacokinetics of sacubitril/valsartan. CONCLUSIONS The results from this study demonstrate no pharmacodynamic drug interaction between nitroglycerin and sacubitril/valsartan in healthy subjects, suggesting that no change of dose selection and escalation recommendations or clinical monitoring during nitroglycerin administration is required.
Collapse
Affiliation(s)
- Uwe Schuehly
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Surya Ayalasomayajula
- Translational Medicine, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Jeppe Buchbjerg
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Parasar Pal
- Biostatistical Sciences, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | | | | | - Gangadhar Sunkara
- Translational Medicine, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Markus Hinder
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas H Langenickel
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
4
|
Zhao F, Chaugai S, Chen P, Wang Y, Wang DW. Effect of nicorandil in patients with heart failure: a systematic review and meta-analysis. Cardiovasc Ther 2015; 32:283-96. [PMID: 25319832 DOI: 10.1111/1755-5922.12097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE It is unclear whether nicorandil, a metabolic therapeutic drug, can be applied clinically to therapy of heart failure (HF). This meta-analysis evaluated therapeutic effects of nicorandil on HF patients. EXPERIMENTAL APPROACH We performed a systematic review and meta-analysis of published studies evaluating effect of nicorandil on HF patients. Studies were stratified according to controlled versus uncontrolled designs and analyzed using random-effects meta-analysis models. KEY RESULTS We identified a total of 20 studies with a total of 1222 patients. In five randomized controlled studies, nicorandil treatment resulted in reduction in all-cause mortality and hospitalization for cardiac causes (HR: 0.35, P < 0.001) and improved cardiac pump function (SMD: 0.31, P = 0.02). In 15 observational studies, nicorandil therapy increases cardiac pump function (SMD: 0.75, P < 0.001), improves NYHA functional class (WMD: -1.33, P < 0.001), decreases PCWP (WMD: -6.86 mm Hg, P < 0.001), and pulmonary arterial pressure (SMD: -0.84, P < 0.001). CONCLUSIONS AND IMPLICATIONS The use of nicorandil in HF patients exerts substantial beneficial effects, suggesting that it may be an additional therapeutic agent for HF.
Collapse
Affiliation(s)
- Fujie Zhao
- Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Iida S, Kinoshita H, Holford NHG. Population pharmacokinetic and pharmacodynamic modelling of the effects of nicorandil in the treatment of acute heart failure. Br J Clin Pharmacol 2008; 66:352-65. [PMID: 18782142 DOI: 10.1111/j.1365-2125.2008.03257.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS The aims of the study were 1) to evaluate the pharmacokinetics of nicorandil in healthy subjects and acute heart failure (AHF) patients and 2) to evaluate the exposure-response relationship with pulmonary arterial wedge pressure (PAWP) in AHF patients and to predict an appropriate dosing regimen for nicorandil. METHODS Based on the data from two healthy volunteer and three AHF patient studies, models were developed to characterize the pharmacokinetics and pharmacodynamics of nicorandil. PAWP was used as the pharmacodynamic variable. An asymptotic exponential disease progression model was used to account for time dependent changes in PAWP that were not explained by nicorandil exposure. The modelling was performed using NONMEM version V. RESULTS The pharmacokinetics of nicorandil were characterized by a two-compartment model with linear elimination. CL, V1 and V2 in AHF patients were 1.96, 1.39 and 4.06 times greater than in healthy subjects. Predicted plasma concentrations were assumed to have an immediate concentration effect relationship on PAWP. An inhibitory E(max) model with E(max) of -11.7 mmHg and EC(50) of 423 microg l(-1) was considered the best relationship between nicorandil concentrations and PAWP. PAWP decreased independently of nicorandil exposure. This drug independent decline was described by an asymptotic decrease of 6.1 mmHg with a half-life of 5.3 h. CONCLUSIONS AHF patients have higher clearance and initial distribution volume of nicorandil compared with healthy subjects. The median target nicorandil concentration to decrease PAWP by 30% is predicted to be 748 microg l(-1), indicating that a loading dose of 200 microg kg(-1) and a maintenance dose of 400 microg kg(-1) h(-1) would be appropriate for the initial treatment of AHF.
Collapse
Affiliation(s)
- Satofumi Iida
- Department of Clinical Pharmacology, Chugai Clinical Research Center Co., Ltd., Tokyo, Japan.
| | | | | |
Collapse
|
7
|
Abstract
Increasing knowledge of the role of nitric oxide (NO) in physiology and disease has stimulated efforts to target the NO pathway pharmacologically. These therapeutic strategies include NO donors that directly or indirectly release NO and agents that increase NO bioactivity. Traditional organic nitrates such as nitroglycerin, which indirectly release NO, were believed to have limited long-term efficacy and tolerability, chiefly because of nitrate tolerance. Recent studies, however, suggest more effective ways of using these agents and new applications for them. Nicorandil, a hybrid organic nitrate that also activates potassium channels, has demonstrated significant benefits in acute coronary syndromes. Other nitrates are being investigated for use in neurodegenerative diseases. Direct NO donors include NO gas, which is useful in respiratory disorders, and the more recent classes of diazeniumdiolates, sydnonimines, and S-nitrosothiols. Preliminary data suggest that these agents may be effective as antiatherosclerotic agents as well as in other disease states. In addition, hybrid agents that consist of an NO donor coupled with a parent anti-inflammatory drug, including nonsteroidal anti-inflammatory drugs, have demonstrated enhanced efficacy and tolerability compared with the anti-inflammatory parent drug alone in diverse experimental models. Established drugs that enhance NO bioactivity include antihypertensive agents, particularly angiotensin-converting enzyme inhibitors, calcium channel blockers, and newer vasodilating beta-blockers. In addition, 3-methylglutaryl coenzyme A reductase inhibitors (statins) promote NO bioactivity, both through and independent of lipid lowering. The NO-promoting actions of these established drugs provide some insight into their known benefits and suggest possible therapeutic potential.
Collapse
Affiliation(s)
- R Preston Mason
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
8
|
Schmid JP, Schroeder V. Nicorandil – Review of Pharmacological Properties and Clinical Applications. ACTA ACUST UNITED AC 2005. [DOI: 10.1159/000089603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Pollesello P, Mebazaa A. ATP-dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit Care 2004; 10:436-41. [PMID: 15616383 DOI: 10.1097/01.ccx.0000145099.20822.19] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight the most recent and interesting articles on the physiologic properties and functions of ATP-dependent potassium channels in the cardiovascular system and on the role of the potassium channel openers for the treatment of cardiovascular dysfunction. RECENT FINDINGS The initial efforts in the development of potassium channel openers focused on the management of systemic hypertension. Lately, the range of possible indications for potassium channel openers has increased to include pulmonary hypertension and stable angina pectoris. The discovery of a connection between the mitochondrial ATP-dependent potassium channels and the phenomenon of cardiac preconditioning created potential new uses for potassium channel openers in myocardial ischemia, inn unstable angina, in preoperative and perioperative settings, and for the preservation of organs for transplant. SUMMARY The most recent data on the physiologic roles of sarcolemmal and mitochondrial ATP-dependent potassium channels and the pharmacology of potassium channel openers in the cardiovascular system are summarized and discussed. Finally, the effects of potassium channel opener drugs including minoxidil, nicorandil, pinacidil, bimakalin, and levosimendan, a dual-action potassium channel opener and calcium sensitizer with inodilator and cardioprotective activity, are discussed.
Collapse
|
10
|
Murakami Y, Wu X, Zhang J, Ochiai K, Bache RJ, Shimada T. Nicorandil improves myocardial high-energy phosphates in postinfarction porcine hearts. Clin Exp Pharmacol Physiol 2002; 29:639-45. [PMID: 12099993 DOI: 10.1046/j.1440-1681.2002.03720.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Nicorandil is a potent vasodilator combining the effects of a nitrate with an ATP-sensitive potassium channel (K(ATP)) opener. Because the postinfarct remodelled heart has increased vulnerability to subendocardial hypoperfusion, it is possible that the vasodilator effects of nicorandil could cause transmural redistribution of blood flow away from the subendocardium. Alternatively, the K(ATP) channel opening effects of nicorandil could exert a beneficial effect on mitochondrial respiration. Consequently, the present study was performed to examine the effect of nicorandil on energy metabolism in the postinfarct heart. 2. Studies were performed in swine in which myocardial infarction produced by proximal left circumflex coronary artery ligation had resulted in left ventricular remodeling. [(31)P] nuclear magnetic resonance spectroscopy (MRS) was used to examine the myocardial energy supply/demand relationship across the left ventricular wall while the transmural distribution of blood flow was examined with radioactive microspheres. Data were obtained during baseline conditions and during infusion of nicorandil (100 microg, i.v., followed an infusion of 25 microg/kg per min). 3. Nicorandil caused coronary vasodilation with a preferential increase in subepicardial flow; however, subendocardial flow also increased significantly. Nicorandil had no significant effect on the rate-pressure product or myocardial oxygen consumption. The ratio of phosphocreatine (PCr)/ATP determined with MRS was abnormally depressed in remodelled hearts (2.01 +/- 0.11, 1.85 +/- 0.10 and 1.59 +/- 0.11 for subepicardium, midwall and subendocardium, respectively) compared with normal (2.22 +/- 0.11, 2.01 +/- 0.15 and 1.80 +/- 0.09, respectively). Nicorandil had no effect on the high-energy phosphate content of normal hearts. However, nicorandil increased the PCr/ATP ratio in the subendocardium of remodelled hearts from 1.59 +/- 0.11 to 1.87 +/- 0.10 (P < 0.05). 4. Although nicorandil caused modest redistribution of blood flow away from the subendocardium of the postinfarct left ventricle, this was associated with an increase of the PCr/ATP ratio towards normal. These results suggest that nicorandil exerts a beneficial effect on energy metabolism in the subendocardium of the postinfarct remodelled left ventricle.
Collapse
Affiliation(s)
- Yo Murakami
- The Fourth Department of Internal Medicine, Shimane Medical University, Izumo, Shimane, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kamijo T, Kamei K, Sugo I, Kamiyama T, Sudo H, Ohba Y. Hemodynamic and hormonal responses to nicorandil in a canine model of acute ischemic heart failure: a comparison with cromakalim and nitroglycerin. J Cardiovasc Pharmacol 1999; 33:93-101. [PMID: 9890402 DOI: 10.1097/00005344-199901000-00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pharmacologic profiles of nicorandil in the cardiovascular system have been characterized by K-channel opening and nitrate activities. However, the effects of nicorandil on acute heart failure have yet to be elucidated. To investigate the effects of nicorandil under such pathophysiologic conditions, we administered nicorandil intravenously to dogs with acute ischemic heart failure induced by coronary embolization and compared the results with those induced by cromakalim and nitroglycerin. The heart failure in this experiment was demonstrated by a reduction of mean blood pressure (MBP) from 143+/-3 to 129+/-2 mm Hg (p < 0.01); cardiac output (CO) from 2.18+/-0.10 to 1.06+/-0.05 L/min (p < 0.01); stroke volume (SV) from 12.7+/-0.6 to 6.8+/-0.3 ml/min (p < 0.01); Vmax, an index of the contractility of the left ventricle, from 105.5+/-4.4 to 49.9+/-1.8 1/s (p < 0.01), and an increase in right atrial pressure (RAP) from 2.9+/-0.3 to 5.3+/-0.3 mm Hg (p < 0.01); left ventricular end-diastolic pressure (LVEDP) from 2.5+/-0.4 to 26.0+/-1.4 mm Hg (p < 0.01); and T, time constant of left ventricular relaxation, from 38.3+/-0.8 to 62.4+/-2.8 ms (p < 0.01). Furthermore, plasma renin activity (PRA) and plasma atrial natriuretic peptide (ANP) increased (from 1.72+/-0.29 to 5.03+/-0.68 ng AngI/ml/h, p < 0.01; from 103.9+/-5.8 to 411.5+/-29.4 pg/ml, p < 0.01, respectively), whereas brain natriuretic peptide (BNP) remained unchanged (from 23.1+/-2.2 to 26.9+/-1.4 pg/ml). Nicorandil (10-40 microg/kg/min, i.v. infusion for 20 min for each dosing) or cromakalim (0.25-1 microg/kg/min) decreased MBP, systemic vascular resistance (SVR), RAP, and LVEDP, and increased CO, SV, and Vmax. However, the reduction of RAP in cromakalim was significantly smaller than those of nicorandil and nitroglycerin in comparison at similar hypotensive doses. Nitroglycerin (2.5-10 microg/kg/min) decreased MBP, RAP, and LVEDP, and increased Vmax but did not change CO or SV. Increased plasma ANP levels, an index of cardiac filling pressure after induction of acute ischemic heart failure, were decreased significantly by cromakalim and tended to decrease by nicorandil or nitroglycerin. Plasma BNP levels and PRA were not influenced by any of these drugs. These results suggest that nicorandil produces the reduction of both preload and afterload followed by an improvement of cardiac contractility in this model. The increase in CO may be mediated mainly by the drug's K-channel opening activities and the reduction of venous tone by its nitrate properties. Nicorandil may prove to be useful in the treatment of acute ischemic heart failure.
Collapse
Affiliation(s)
- T Kamijo
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Schotborgh CE, Wilde AA. ATP-Sensitive Potassium Channel Openers and Blockers in the Cardiovascular System: Physiology, Pharmacology, and Clinical Effects. Semin Cardiothorac Vasc Anesth 1998. [DOI: 10.1177/108925329800200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine triphosphate (ATP)-sensitive potassium chan nels (K.ATP channels), a subclass of potassium channels activated by a low intracellular ATP concentration, have been described in various tissue types, including the heart muscle and vascular smooth muscle. In ventricu lar myocytes, activation of these channels is considered protective, because their activation caused by hypoxia or ischemia results in cell energy preservation. Activa tion of K.ATP channels in vascular smooth muscle cells causes hyperpolarization of the cell membrane, muscle cell relaxation, and vasodilation. Potassium channel openers are pharmacologic activators of K.ATP chan nels. Their protective effects on the ischemic myocar dium and their vasodilating properties have been stud ied extensively. Sulfonylurea derivatives, widely used in the treatment of noninsulin-dependent diabetes melli tus, are considered selective blockers of K.ATP channels and have been used in many experiments to show K.ATP channel involvement. This article focuses on these issues and the clinical effects and potentials of K.ATP channel modulation.
Collapse
Affiliation(s)
- Carl E. Schotborgh
- Academic Medical Center, University of Amsterdam, Department of Clinical and Experimental Cardiology, Amsterdam, The Netherlands
| | - Arthur A.M. Wilde
- The Heart-Lung Institute, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Affiliation(s)
- J J Monsuez
- Department of Internal Medicine, Hôpital Paul Brousse, Paris, France
| |
Collapse
|
14
|
Münzel T, Kurz S, Rajagopalan S, Thoenes M, Berrington WR, Thompson JA, Freeman BA, Harrison DG. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest 1996; 98:1465-70. [PMID: 8823313 PMCID: PMC507574 DOI: 10.1172/jci118935] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hydralazine has been shown to reduce mortality in patients with congestive heart failure when given concomitantly with isosorbide dinitrate. Recently, we demonstrated that nitrate tolerance is in part due to enhanced vascular superoxide .O2- production. We sought to determine mechanisms whereby hydralazine may prevent tolerance. Rabbits either received no treatment, nitroglycerin patches (1.5 micrograms/kg/min x 3 d), hydralazine alone (10 mg/kg/d in drinking water), or hydralazine and nitroglycerin. Aortic segments were studied in organ chambers and relative rates of vascular .O2- production were determined using lucigenin-enhanced chemiluminescence. Nitroglycerin treatment markedly inhibited relaxations to nitroglycerin (maximum relaxations in untreated: 92 +/- 1 vs. 64 +/- 3% in nitroglycerin-treated patients and increased vascular .O2- production by over two-fold (P < 0.05). Treatment with hydralazine in rabbits not receiving nitroglycerin significantly decreased .O2- production in intact rabbit aorta and increased sensitivity to nitroglycerin. When given concomitantly with nitroglycerin, hydralazine completely prevented the development of nitrate tolerance and normalized endogenous rates of vascular .O2- production. Studies of vessel homogenates demonstrated that the major source of .O2- was an NADH-dependent membrane-associated oxidase displaying activities of 67 +/- 12 vs. 28 +/- 2 nmol .O2-.min-1.mg protein-1 in nitroglycerin-treated vs. untreated aortic homogenates. In additional studies, we found that acute addition of hydralazine (10 microM) to nitroglycerin-tolerant vessels immediately inhibited .O2- production and NADH oxidase activity in vascular homogenates. The chemiluminescence signal was inhibited by a recombinant heparin-binding superoxide dismutase (HBSOD) demonstrating the specificity of this assay for .O2-. These observations suggest that a specific membrane-associated oxidase is activated by chronic nitroglycerin treatment, and the activity of this oxidase is inhibited by hydralazine, providing a mechanism whereby hydralazine may prevent tolerance. The ability of hydralazine to inhibit vascular .O2- anion production represents a novel mechanism of action for this drug.
Collapse
Affiliation(s)
- T Münzel
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Goldschmidt M, Landzberg BR, Frishman WH. Nicorandil: a potassium channel opening drug for treatment of ischemic heart disease. J Clin Pharmacol 1996; 36:559-72. [PMID: 8844437 DOI: 10.1002/j.1552-4604.1996.tb04219.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nicorandil is the first oral potassium channel activating drug to be used for the treatment of symptomatic coronary artery disease. It appears to relax vascular smooth muscle through membrane hyperpolarization via increased transmembrane potassium conductance and, like nitrates, through an increase in intracellular cyclic GMP. In addition, nicorandil, in a nitrate-like manner, dilates normal and stenotic coronary arteries and reduces both ventricular preload and afterload. In contrast to nitrates, however, nicorandil does not appear to cause tolerance with long-term administration. In placebo and comparison clinical trials, nicorandil has demonstrated some efficacy and safety in patients with both stable and vasospastic angina pectoris, and it was found to be a myocardial protective agent in animal studies. The antianginal activity of nicorandil, however, is relatively short lived after dosing, which will necessitate the development of extended-release formulations of the drug.
Collapse
Affiliation(s)
- M Goldschmidt
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | | | | |
Collapse
|