1
|
Mano F, LoBue S, Tailor P, Olsen TW. Incisional choroidal surgery. Surv Ophthalmol 2025; 70:595-615. [PMID: 39222800 DOI: 10.1016/j.survophthal.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The choroid is a thin layer of highly vascular uveal tissue enclosed externally by sclera and internally by neurosensory retinal tissue. The choroid is a "middle layer" ocular tissue with anatomically challenging surgical access. The primary functional role of the choroid is to provide rapid, oxygenated, and nutrient-rich blood flow to both the highly metabolic retinal pigment epithelium and outer retina (i.e. photoreceptors) while simultaneously removing waste products. Historically, incisional choroidal surgery (ICS) has involved tumor biopsy or excision, removal of choroidal neovascular complex or autologous choroidal translocations; however, ICS also holds unique potential for novel and innovative approaches to address macular pathology. Using large-animal surgical studies, researchers have explored ICS with the objective of finding safer and more effective techniques to reduce surgical risks such as bleeding, tissue contraction, and scar tissue formation. We explore the relevant anatomy and embryology, existing surgical techniques, discuss the implications for retinal drug delivery, define ICS guiding principles, and offer a rationale for implementation of ICS into a vitreoretinal surgical practice. We also identify other future challenges and anticipate future innovations that will advance ICS.
Collapse
Affiliation(s)
- Fukutaro Mano
- Kindai University, Osaka, Japan; Mayo Clinic, Rochester, MN, USA
| | - Stephen LoBue
- LoBue Laser and Eye Medical Center, Murrieta, CA, USA; Mayo Clinic, Rochester, MN, USA
| | | | - Timothy W Olsen
- Chair Emeritus, Emory University, Atlanta, GA, USA; Mayo Clinic, Rochester, MN, USA; EyeMacular Regeneration, Inc., Rochester, MN, USA; iMacular Regeneration, LLC, Rochester, MN, USA.
| |
Collapse
|
2
|
Chen SY, Xu YM, Tam POS, Pang CP, Tham CC, Yam JC, Chen LJ. Association of polymorphisms in the HTRA1 gene with myopia. Br J Ophthalmol 2025; 109:456-462. [PMID: 39406463 DOI: 10.1136/bjo-2024-325935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/29/2024] [Indexed: 03/22/2025]
Abstract
PURPOSE To evaluate the associations of single-nucleotide polymorphisms (SNPs) in the high-temperature requirement protease A 1 (HTRA1) gene with myopia. METHODS 25 SNPs in HTRA1 were selected, including 23 haplotype-tagging SNPs, SNP rs2142308 from a previous genome-wide association study (GWAS) of myopia and rs11200638, a SNP strongly associated with age-related macular degeneration (AMD). All SNPs were genotyped in a Hong Kong Chinese cohort of 533 myopia subjects (including 175 high myopia, 189 moderate myopia and 189 mild myopia) and 280 non-myopic controls. The association of individual SNPs were evaluated in overall myopia and different subgroups of myopia using logistic regression. RESULTS A tagging SNP, rs11200647, was significantly associated with myopia (p=2.17×10-4, OR=0.67). Nominal associations were detected for the AMD-associated SNP rs11200638 (p=0.0042, OR=1.37) and tagging SNPs rs12266322 (p=0.0048, OR=0.59) and rs17103569 (p=0.047, OR=1.34). The association of rs11200647 with myopia remained significant after adjusting for rs11200638, rs12266322 and rs17103569. In sub-group analysis, two tagging SNPs, rs11200647 (p=2.24×10-4, OR=0.58) and rs12266322 (p=8.31×10-4, OR=0.39), showed significant association with moderate myopia. In haplotype association analysis, haplotypes AT (p=1.00×10-4, OR=1.77) and haplotype GT (p=0.0019, OR=0.64), defined by rs11200647 and rs66884382, were significantly associated with myopia. CONCLUSIONS This study provided new evidence to support HTRA1 as an associated gene for myopia, especially moderate myopia. The findings suggested that myopia and AMD may have shared genetic components.
Collapse
Affiliation(s)
- Shu Ying Chen
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - You Mei Xu
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Pancy O S Tam
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Pui Pang
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jason C Yam
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Li Jia Chen
- Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong
| |
Collapse
|
3
|
Zarnegar A, Valsecchi N, Sadeghi E, Shah S, Tang A, Yagobian S, Iannetta D, Chhablani J. Choroidal imaging biomarkers as predictors of conversion to exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2025; 263:59-67. [PMID: 39162805 DOI: 10.1007/s00417-024-06611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
PURPOSE Predicting the progression of intermediate AMD (iAMD) to neovascular AMD (nAMD) will help to identify high-risk patients and improve treatment outcomes. The present study assessed whether choroidal OCT biomarkers could predict conversion to nAMD. METHODS This retrospective study included patients with clinically stable iAMD who either converted to nAMD (C group) or did not convert (NC group) during one year of follow-up. OCT parameters included subfoveal choroidal thickness (SFCT), central macular thickness (CMT), Haller vascular thickness (HVT), inner choroidal thickness (ICT), and double-layer sign (DLS). RESULTS Of 116 total eyes, there were 37 in the NC group and 79 in the C group. Baseline SFCT was significantly lower in the C group compared to the NC group (169.0 ± 63.2 μm vs. 218.0 ± 97.8 μm, p = 0.01). Baseline HVT and ICT were lower in the C group (105.2 ± 40.6 μm vs. 121.0 ± 56.6 μm, p = 0.17 and 61.9 ± 35.5 μm vs. 77.5 ± 41.7 μm, p = 0.09). HVT was decreased at all time points in the C group vs NC (p > 0.05). The ICT was reduced in the C group at each time point except at conversion time (p > 0.05). Of all eight eyes who presented DLS at baseline, 100% converted to nAMD (p < 0.001). CONCLUSION Lower SFCT at baseline may signal conversion to nAMD within 12 months.
Collapse
Affiliation(s)
- Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicola Valsecchi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ophthalmology Unit, Dipartimento Di Scienze Mediche E Chirurgiche, Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Elham Sadeghi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stavan Shah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony Tang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiva Yagobian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danilo Iannetta
- Ophthalmology Unit, Dipartimento Di Scienze Mediche E Chirurgiche, Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Song D, Ni Y, Zhou Y, Niu Y, Wang G, Lv B, Xie G, Liu G. Evaluation of choroid vascular layer thickness in wet age-related macular degeneration using artificial intelligence. Photodiagnosis Photodyn Ther 2024; 47:104218. [PMID: 38777310 DOI: 10.1016/j.pdpdt.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To facilitate the assessment of choroid vascular layer thickness in patients with wet age-related macular degeneration (AMD) using artificial intelligence (AI). METHODS We included 194 patients with wet AMD and 225 healthy participants. Choroid images were obtained using swept-source optical coherence tomography. The average Sattler layer-choriocapillaris complex thickness (SLCCT), Haller layer thickness (HLT), and choroidal thickness (CT) were auto-measured at 7 regions centered around the foveola using AI and subsequently compared between the 2 groups. RESULTS The SLCCT was lower in the AMD group than in the control group (P < 0.05). The HLT was significantly higher in the AMD group than in the control group at the Tparafovea and T-perifovea in the total population (P < 0.05) and in the ≤70-year subgroup (P < 0.05). The CT was higher in the AMD group than in the control group, particularly at the N-perifovea, T-perifovea, and T-parafovea in the ≤70-year subgroup; Interestingly, it was lower in the AMD group than in the control group at the Nparafovea, N-fovea, foveola, and T-fovea in the >70-year subgroup (P < 0.05). CONCLUSION This novel AI-based auto-measurement was more accurate, efficient, and detailed than manual measurements. SLCCT thinning was observed in wet AMD; however, CT changes depended on the interaction between HLT compensatory thickening and SLCCT thinning.
Collapse
Affiliation(s)
- Dan Song
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yuan Ni
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China
| | - Ying Zhou
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yaqian Niu
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Guanzheng Wang
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China
| | - Bin Lv
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China
| | - Guotong Xie
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China; Ping An Health Cloud Company Limited, 12F Building B, PingAn IFC, No. 1-3 Xinyuan South Road, Beijing 100027, China.
| | - Guangfeng Liu
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China.
| |
Collapse
|
6
|
Velmurugan S, Pauline R, Chandrashekar G, Kulanthaivel L, Subbaraj GK. Understanding the Impact of the Sirtuin 1 (SIRT1) Gene on Age-related Macular Degeneration: A Comprehensive Study. Niger Postgrad Med J 2024; 31:93-101. [PMID: 38826012 DOI: 10.4103/npmj.npmj_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent and incurable condition affecting the central retina and posing a significant risk to vision, particularly in individuals over the age of 60. As the global population ages, the prevalence of AMD is expected to rise, leading to substantial socioeconomic impacts and increased healthcare costs. The disease manifests primarily in two forms, neovascular and non-neovascular, with genetic, environmental and lifestyle factors playing a pivotal role in disease susceptibility and progression. This review article involved conducting an extensive search across various databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, Scopus and EMBASE, to compile relevant case-control studies and literature reviews from online published articles extracted using search terms related to the work. SIRT1, a key member of the sirtuin family, influences cellular processes such as ageing, metabolism, DNA repair and stress response. Its dysregulation is linked to retinal ageing and ocular conditions like AMD. This review discusses the role of SIRT1 in AMD pathology, its association with genetic variants and its potential as a biomarker, paving the way for targeted interventions and personalised treatment strategies. In addition, it highlights the findings of case-control studies investigating the relationship between SIRT1 gene polymorphisms and AMD risk. These studies collectively revealed a significant association between certain SIRT1 gene variants and AMD risk. Further studies with larger sample sizes are required to validate these findings. As the prevalence of AMD grows, understanding the role of SIRT1 and other biomarkers becomes increasingly vital for improving diagnosis, treatment and, ultimately, patient outcomes.
Collapse
Affiliation(s)
- Saranya Velmurugan
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Rashmi Pauline
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Department of Biomedical Sciences, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
7
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Sayin O, Altinkaynak H. Macular Pigment Optical Density in First Degree Relatives of Age-Related Macular Degeneration Patients. Curr Eye Res 2023; 48:1057-1062. [PMID: 37494149 DOI: 10.1080/02713683.2023.2242012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE To measure the macular pigment optical density in first-degree relatives of patients with age-related macular degeneration and compare it with a healthy control group. METHODS One hundred and twenty-eight healthy subjects who were first-degree relatives of age-related macular degeneration patients were included in the study (Group 1). As the control group, 74 healthy subjects were included in the study (Group 2). The right eyes of all cases were included in the study. Macular pigment optical density was measured with a commercially available device (MPSII®, Elektron Technology, Switzerland) using technology based on heterochromatic flicker photometry. Central foveal thickness and subfoveal choroidal thickness were measured with spectral-domain optical coherence tomography. Values were compared between the two groups. RESULTS There were 54 males and 74 females in Group 1 and 32 males and 42 females in Group 2. The mean ± SD ages of Group 1 and Group 2 were 49.0 ± 7.6 and 41.8 ± 8.6, respectively. Mean ± SD macular pigment optical density values of Group 1 and Group 2 were 0.43 ± 0.09 and 0.47 ± 0.12 (p = 0.048), mean ± SD central foveal thickness were 208 ± 19 and 216 ± 8 µm (p = 0.014), and mean ± SD subfoveal choroidal thickness were 232 ± 29 and 250 ± 21 µm (p = 0.002), respectively. CONCLUSION The macular pigment optical density values were significantly lower in the first-degree relatives of patients with age-related macular degeneration than in the control group. Macular pigment optical density may be a marker for the development of age-related macular degeneration in the future in the first-degree relatives of age-related macular degeneration patients. Further prospective studies with a larger number of participants will be needed to confirm our results moreover, to clarify its benefit as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Osman Sayin
- Department of Ophthalmology, Konya City Hospital, Konya, Turkey
| | | |
Collapse
|
9
|
Viggiano P, Miere A, Borrelli E, Boscia G, Grassi MO, Souied EH, Alessio G, Boscia F. The Impact of Diabetic Retinopathy on the Choriocapillaris in Neovascular AMD. Invest Ophthalmol Vis Sci 2023; 64:32. [PMID: 37988106 PMCID: PMC10668630 DOI: 10.1167/iovs.64.14.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Purpose To investigate the impact of diabetic retinopathy (DR) on morphological choriocapillaris (CC) modifications in eyes with type 1 macular neovascularization (MNV) secondary to AMD using optical coherence tomography angiography (OCTA). Methods Eyes with AMD-related type 1 MNV with and without DR were prospectively included. We performed 3 × 3 mm OCTA scans at two visits: before the loading phase of intravitreal injections of aflibercept (T1) and 1 month after the last injection (T2). OCTA En face flow images of the CC were analyzed for flow deficit percentage (FD%), FD average area and FD number in a 500-µm-wide ring surrounding the dark halo (DH) around type 1 MNV. Results A total of 65 eyes, out of which 30 eyes had mild DR, were included. In the group without diabetes, there was a gradual reduction in FD% in the CC ring around the DH after antiangiogenic therapy, indicating reperfusion of the CC (P = 0.003). However, in the DR group, there were no significant changes in CC parameters between the two study visits. Specifically, the FD% in the CC ring around the DH did not show a significant reduction at T2 compared with T1 values (P > 0.05). Furthermore, the comparison of the variation in FD% between the two groups was statistically significant. The nondiabetic group exhibited a gradual CC reperfusion after the loading phase of aflibercept, whereas the diabetic eyes did not show significant changes (P = 0.029). Conclusions The CC surrounding the DH associated to type 1 MNV exhibited greater hypoperfusion in diabetic eyes compared with eyes without diabetes, both before starting therapy and after the loading phase. Hence, DR may be a potential risk factor in the development and progression of late-stage AMD and may also influence the response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Pasquale Viggiano
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro,” Bari, Italy
| | - Alexandra Miere
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, Université Paris Est, Créteil, France
| | - Enrico Borrelli
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Giacomo Boscia
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro,” Bari, Italy
| | - Maria Oliva Grassi
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro,” Bari, Italy
| | - Eric H. Souied
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, Université Paris Est, Créteil, France
| | - Giovanni Alessio
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro,” Bari, Italy
| | - Francesco Boscia
- Department of Translational Biomedicine Neuroscience, University of Bari “Aldo Moro,” Bari, Italy
| |
Collapse
|
10
|
Wąż P, Zorena K, Murawska A, Bielińska-Wąż D. Classification Maps: A New Mathematical Tool Supporting the Diagnosis of Age-Related Macular Degeneration. J Pers Med 2023; 13:1074. [PMID: 37511686 PMCID: PMC10381320 DOI: 10.3390/jpm13071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE A new diagnostic graphical tool-classification maps-supporting the detection of Age-Related Macular Degeneration (AMD) has been constructed. METHODS The classification maps are constructed using the ordinal regression model. In the ordinal regression model, the ordinal variable (the dependent variable) is the degree of the advancement of AMD. The other variables, such as CRT (Central Retinal Thickness), GCC (Ganglion Cell Complex), MPOD (Macular Pigment Optical Density), ETDRS (Early Treatment Diabetic Retinopathy Study), Snellen and Age have also been used in the analysis and are represented on the axes of the maps. RESULTS Here, 132 eyes were examined and classified to the AMD advancement level according to the four-point Age-Related Eye Disease Scale (AREDS): AREDS 1, AREDS 2, AREDS 3 and AREDS 4. These data were used for the creation of two-dimensional classification maps for each of the four stages of AMD. CONCLUSIONS The maps allow us to perform the classification of the patient's eyes to particular stages of AMD. The pairs of the variables represented on the axes of the maps can be treated as diagnostic identifiers necessary for the classification to particular stages of AMD.
Collapse
Affiliation(s)
- Piotr Wąż
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Murawska
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Dorota Bielińska-Wąż
- Department of Radiological Informatics and Statistics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
11
|
Jung W, Han K, Kim B, Hwang S, Yoon JM, Park J, Lim DH, Shin DW. Age-Related Macular Degeneration With Visual Disability Is Associated With Cardiovascular Disease Risk in the Korean Nationwide Cohort. J Am Heart Assoc 2023; 12:e028027. [PMID: 37119082 PMCID: PMC10227218 DOI: 10.1161/jaha.122.028027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 04/30/2023]
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of visual disability. AMD shares some risk factors with the pathogenesis of cardiovascular disease (CVD). However, previous studies examining the association between AMD and the risk of CVD provide conflicting results. Hence, we investigated the association between AMD, visual disability, and the risk of CVD. Methods and Results This is a nationwide cohort study using data from the Korean National Health Insurance System database (2009-2019) on subjects who underwent a national health screening program in 2009. A total of 3 789 963 subjects were categorized by the presence of AMD and visual disability. Visual disability was defined as a best-corrected visual acuity of ≤20/100 by validated documentation from a specialist physician. Cox regression hazard model was used to examine the hazard ratios (HRs) of CVD, including myocardial infarction and ischemic stroke, after adjusting for potential confounders. During a mean 9.77 years of follow-up, AMD was associated with a 5% higher risk of myocardial infarction (adjusted HR [aHR], 1.05 [95% CI, 1.01-1.10]) but not associated with increased risk of overall CVD (aHR, 1.02 [95% CI, 1.00-1.05]) or ischemic stroke (aHR, 1.02 [95% CI, 0.98-1.06]). However, when AMD was accompanied by visual disability, there was increased risk of CVD (aHR, 1.17 [95% CI, 1.06-1.29]), myocardial infarction (aHR, 1.18 [95% CI, 1.01-1.37]), and ischemic stroke (aHR, 1.20 [95% CI, 1.06-1.35]). These trends were more evident in women and subjects with cardiometabolic comorbidities. Conclusions AMD with visual disability, but not all AMD, was associated with an increased risk of CVD. Patients with AMD who have visual disability should be targeted for CVD prevention.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of MedicineSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Sungsoon Hwang
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Je Moon Yoon
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Junhee Park
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of MedicineSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Dong Hui Lim
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Alsaqr A, Alharbi M, Aldossary N, Alruwished A, Alharbi M, Alghaib K, Alabdulkarim A, Alhamdan S, Almutleb E, Abusharha A. Assessment of macular pigment optical density in Arab population and its relationship to people's anthropometric data: a cross-sectional study. Ther Adv Ophthalmol 2023; 15:25158414231189099. [PMID: 37599800 PMCID: PMC10436989 DOI: 10.1177/25158414231189099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Background Anthropometry facilitates the evaluation of risks associated with reduced macular pigment optical density (MPOD). Objectives To investigate the predictors and anthropometric indices associated with MPOD in healthy adult in Arab population. Design This is a cross-sectional study. Methods The MPOD was measured at 0.5° from fovea using a heterochromatic flicker photometer. Healthy participants aged between 20 and 40 years were recruited. The study evaluated the following data of the participants: height, weight, body mass index, body fat percentage, basal metabolic rate, visceral fat level, muscle mass, bone mineral content, and percentage of protein and body water. The correlation between MPOD with anthropometrics and demographic data was evaluated using Spearman's correlation test. The differences among genders were investigated using the Mann-Whitney U test. The smoking effect on MPOD was analyzed using the Friedman test. Results In all, 143 participants were recruited. The median ± interquartile range was calculated for age (23 ± 4 years), visual acuity (0.00 ± 0.00 logMAR), and MPOD (0.41 ± 0.18). The average MPOD was higher in males than in females but it was not statistically significant (p > 0.05); on the other hand, they were statistically significantly different in most of the anthropometric data. A significant relationship was found between MPOD and percentage of body fat, protein, and body water (r = 0.30, p < 0.05). The observed median MPOD value was higher in this study than that found in previous studies in white populations, but lower than that found in studies investigating Asian populations. Conclusion One of the most important risk factors of age-related macular degeneration is associated with a relative absence of macular pigment. This study brought into focus percentage of protein and body water for further studies as well as the well-established links with body fat and obesity. Unknown predictors of MPOD remain uncovered. The study also provided first report on normative values of MPOD for Arab population and confirmed the differences from other ethnicities.
Collapse
Affiliation(s)
- Ali Alsaqr
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Manal Alharbi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Aldossary
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alruwished
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alharbi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alghaib
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Alabdulkarim
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alhamdan
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Esam Almutleb
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Abusharha
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Association of HERPUD1 genetic variant rs2217332 with age-related macular degeneration and polypoidal choroidal vasculopathy in an Indian cohort. Graefes Arch Clin Exp Ophthalmol 2022; 261:1205-1212. [PMID: 36220983 DOI: 10.1007/s00417-022-05861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) are sister diseases and have several similar clinical features and still have few genetic differences. The association of HERPUD1 (homocysteine inducible ER protein with ubiquitin like domain 1) gene variant rs2217332 with PCV is known; however, such association with AMD has not been reported in the Indian population. We analyzed the association of rs2217332 with PCV and AMD to identify the preferential association of this variant with these diseases. METHODS This is a population-based case-control study consisting of 422 patients (129 AMD cases; 101 PCV cases, 192 healthy controls) recruited from the vitreoretinal clinic Sankara Nethralaya. The sample size for the study was calculated using appropriate power calculation methods. Genotype was determined using PCR-based Sanger sequencing. The SPSS V23.0 statistical package tool was used to calculate chi-square and ROC to determine the association of rs2217332 with control, AMD, and PCV. RESULTS Here, we report for the first time the association of this genetic variant (rs2217332) with AMD and PCV in the Indian population. The case-control study shows a significant association of this SNP with PCV (P value = 0.002); however, this variant is not significantly associated with AMD (P value = 0.602). Comparison between AMD (as control) and PCV (as case) also showed significant association of the SNP with PCV (P value = 0.02). Minor allele A conferred to increase the risk of PCV. CONCLUSIONS The study concludes that the genetic variant rs2217332 in HERPUD1 gene is highly significantly associated with PCV and not with AMD in Indian populations.
Collapse
|
14
|
Lylyk I, Bleise C, Lylyk PN, Perez N, Lundquist J, Scrivano E, Francone AA, Charles M, Zompa T, Lylyk P. Ophthalmic artery angioplasty for age-related macular degeneration. J Neurointerv Surg 2022; 14:968-972. [PMID: 34987072 PMCID: PMC9484375 DOI: 10.1136/neurintsurg-2021-018222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND There is considerable overlap of contributors to cardiovascular disease and the development of age-related macular degeneration (AMD). Compromised ocular microcirculation due to aging and vascular disease contribute to retinal dysfunction and vision loss. Decreased choroidal perfusion is evident in eyes with dry AMD and is thought to play a role in retinal pigment epithelial dysfunction, the rate of development of geographic atrophy, and the development of neovascularization. The aim of the study was to demonstrate that AMD is correlated with a compromised blood flow in the ocular pathway and show OA angioplasty as a potential treatment of late-stage AMD. METHODS Based on the potential for the ophthalmic artery (OA) to be an anatomical target for the treatment of AMD as outlined above, five patients were found to be eligible for compassionate use treatment, presenting clinically significant late-stage AMD with profound vision loss in one or both eyes, and are included in this retrospective study. RESULTS OA narrowing, or significant calcium burden at the ophthalmic segment of the internal carotid artery compromising the origin of the OA was confirmed in all cases. Subsequent OA cannulation was achieved in all patients with some difficulty. Subjective patient reports indicated that all patients perceived a benefit following the procedure; however, improved postoperative visual acuity did not confirm that perceived benefit for one of the patients. CONCLUSIONS Feasibility and safety of the OA angioplasty were demonstrated, and a benefit perceived in five patients with profound vision loss and a desire to achieve improved quality of life. A clinical trial with controlled schedule, imaging, and methodologies is needed to confirm these results.
Collapse
Affiliation(s)
- Ivan Lylyk
- Department of Interventional Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| | - Carlos Bleise
- Department of Interventional Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| | - Pedro N Lylyk
- Department of Interventional Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| | - Nicolas Perez
- Department of Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| | - Javier Lundquist
- Department of Interventional Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| | - Esteban Scrivano
- Department of Interventional Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| | - Anibal A Francone
- Department of Ophthalmology, Centro Oftalmológico Dr Daniel Charles S.A, Buenos Aires, Argentina
| | - Martin Charles
- Department of Ophthalmology, Centro Oftalmológico Dr Daniel Charles S.A, Buenos Aires, Argentina
| | - Tamara Zompa
- Department of Ophthalmology, Centro Oftalmológico Dr Daniel Charles S.A, Buenos Aires, Argentina
| | - Pedro Lylyk
- Department of Interventional Neuroradiology, Instituto Medico ENERI, Buenos Aires, Argentina
| |
Collapse
|
15
|
Lee SC, Rusakevich AM, Amin A, Tran S, Emami-Naeini P, Moshiri A, Park SS, Yiu G. Long-Term Retinal Vascular Changes in Age-Related Macular Degeneration Measured Using Optical Coherence Tomography Angiography. Ophthalmic Surg Lasers Imaging Retina 2022; 53:529-536. [DOI: 10.3928/23258160-20220919-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Savastano MC, Fossataro C, Carlà MM, Fantozzi C, Falsini B, Savastano A, Rizzo C, Kilian R, Rizzo S. OCT angiography analysis of choriocapillaris vascular density in different stages of age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2022; 2:985262. [PMID: 38983525 PMCID: PMC11182125 DOI: 10.3389/fopht.2022.985262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/23/2022] [Indexed: 07/11/2024]
Abstract
Objectives To analyze the choriocapillaris vessel density (CVD) of eyes at different stages of Age-related Macular Degeneration (AMD) with Optical Coherence Tomography Angiography (OCTA). Methods This is a prospective observational cross-sectional study on 21 age-matched healthy eyes and 84 eyes with AMD (i.e., early AMD, late AMD, Geographic Atrophy [GA], and disciform scar AMD). OCTA was used to automatically measure the CVD (%), on both the whole macula and the foveal area, in a layer going from 9 µm above to 30 µm below the Bruch's membrane. Furthermore, in the GA subgroup, the extension of the Ellipsoid Zone (EZ) interruption and the area of macular chorio-retinal atrophy was analyzed. Results Macular CVD was significantly lower in the GA, late AMD and disciform scar AMD-subgroups compared to controls (respectively, p=0.0052; p<0.0001; p=0.0003), whereas it did not significantly vary in the early AMD group (p=0.86). A significant difference between the early AMD and both the late AMD and the disciform scar AMD subgroups was also found (p=0.0009 and 0.0095, respectively). When comparing the foveal CVD of healthy and AMD eyes, a significant difference was found with every AMD subgroup (early AMD, p=0.011; GA, p<0.0001; late AMD, p<0.0001; disciform scar AMD, p<0.0001). Furthermore, in the GA subgroup, the CVD had an inverse correlation with both the extension of the EZ-interruption (p=0.012) and with the calculated chorio-retinal atrophic area (p=0.009). Conclusions OCTA could play a crucial role in the categorization of AMD, allowing for the evaluation of gradual flow impairment at different stages of the disease. Moreover, the detection of a decreased macular and foveal CVD may shed light on the pathogenesis of AMD.
Collapse
Affiliation(s)
- Maria Cristina Savastano
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Fossataro
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Mario Carlà
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Fantozzi
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetto Falsini
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfonso Savastano
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara Rizzo
- Ophthalmology Unit, University of Verona, Verona, Italy
| | | | - Stanislao Rizzo
- Ophthalmology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
- Consiglio Nazionale della Ricerca (CNR), Istituto di Neuroscienze, Pisa, Italy
| |
Collapse
|
17
|
Shughoury A, Sevgi DD, Ciulla TA. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes (Basel) 2022; 13:1233. [PMID: 35886016 PMCID: PMC9316037 DOI: 10.3390/genes13071233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is among the leading causes of irreversible blindness worldwide. In addition to environmental risk factors, such as tobacco use and diet, genetic background has long been established as a major risk factor for the development of AMD. However, our ability to predict disease risk and personalize treatment remains limited by our nascent understanding of the molecular mechanisms underlying AMD pathogenesis. Research into the molecular genetics of AMD over the past two decades has uncovered 52 independent gene variants and 34 independent loci that are implicated in the development of AMD, accounting for over half of the genetic risk. This research has helped delineate at least five major pathways that may be disrupted in the pathogenesis of AMD: the complement system, extracellular matrix remodeling, lipid metabolism, angiogenesis, and oxidative stress response. This review surveys our current understanding of each of these disease mechanisms, in turn, along with their associated pathogenic gene variants. Continued research into the molecular genetics of AMD holds great promise for the development of precision-targeted, personalized therapies that bring us closer to a cure for this debilitating disease.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Duriye Damla Sevgi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Thomas A. Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
- Clearside Biomedical, Inc., Alpharetta, GA 30005, USA
- Midwest Eye Institute, Indianapolis, IN 46290, USA
| |
Collapse
|
18
|
Flores R, Carneiro Â, Neri G, Fradinho AC, Quenderra B, Barata MJ, Tenreiro S, Seabra MC. Choroidal Vascular Impairment in Intermediate Age-Related Macular Degeneration. Diagnostics (Basel) 2022; 12:diagnostics12051290. [PMID: 35626445 PMCID: PMC9141612 DOI: 10.3390/diagnostics12051290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease, whose complete pathogenesis is still unclear. Local hemodynamics may play a crucial role in its manifestation and progression. To evaluate choroidal and retinal vascular parameters, a total of 134 eyes were analyzed, 100 with intermediate AMD and 34 age matched healthy controls. 131 eyes of 104 patients were eligible for complete image assessment and 3 eyes were excluded for insufficient image quality: Group 1: intermediate AMD (n = 97) and Group 2: healthy controls (n = 34). Spectral domain optic coherence tomography (SD-OCT) with enhanced depth imaging (EDI) and optic coherence tomography angiography (OCT-A) were acquired using Spectralis (Heidelberg Engineering). Choroid and retinal capillary plexus were evaluated and image binarization was used to obtain quantitative data. Mean age was 77.67 years old (YO) and 67.2% were women. Total subfoveal choroidal area and luminal area were significantly reduced in Group 1 compared with Group 2 (0.88 mm2 and 0.40 mm2 vs. 1.24 mm2 and 0.55 mm2, respectively) (p < 0.05). Regarding choriocapillary flow density, AMD eyes recorded reduced values (34.83%) compared with controls (36.25%) (p < 0.05). Chorioretinal vasculature is impaired in intermediate AMD patients and vascular parameters could be attractive new prognostic biomarkers. Future therapeutic approaches may target this vascular dysfunction and delay disease progression.
Collapse
Affiliation(s)
- Rita Flores
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central EPE, 1169-050 Lisbon, Portugal; (G.N.); (B.Q.); (M.J.B.)
- NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (A.C.F.); (S.T.); (M.C.S.)
- Correspondence:
| | - Ângela Carneiro
- Department of Ophthalmology, Centro Hospitalar Universitário de São João, 4099-002 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Guilherme Neri
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central EPE, 1169-050 Lisbon, Portugal; (G.N.); (B.Q.); (M.J.B.)
| | - Ana C. Fradinho
- NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (A.C.F.); (S.T.); (M.C.S.)
| | - Bruno Quenderra
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central EPE, 1169-050 Lisbon, Portugal; (G.N.); (B.Q.); (M.J.B.)
| | - Maria João Barata
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central EPE, 1169-050 Lisbon, Portugal; (G.N.); (B.Q.); (M.J.B.)
| | - Sandra Tenreiro
- NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (A.C.F.); (S.T.); (M.C.S.)
| | - Miguel C. Seabra
- NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (A.C.F.); (S.T.); (M.C.S.)
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
19
|
Kim DI, Yoon CK, Yu HG. Unilateral Cilioretinal Artery and Advanced Age-Related Macular Degeneration: A Retrospective Cross-Sectional Study. Am J Ophthalmol 2022; 237:204-210. [PMID: 34780795 DOI: 10.1016/j.ajo.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the association between the presence of a cilioretinal artery (CRA) and advanced age-related macular degeneration (AMD), including the prevalence of choroidal neovascularization (CNV) and geographic atrophy (GA). DESIGN Retrospective cross-sectional study. METHODS This was a single-center study. A total of 738 patients with AMD who underwent optical coherence tomography angiography (OCTA) were included in the study. Fundus photographs were reviewed to determine the presence of the CRA. In patients with a unilateral CRA, paired tests were performed between eyes with and without the CRA to compare AMD severity and prevalence of CNV and GA. The main outcomes of interest were AMD stage and prevalence of CNV and GA. Macular vasculature, including vessel density, perfusion density, and foveal avascular zone, were examined using OCTA. RESULTS A total of 174 eyes from 87 patients with a unilateral CRA were examined. A total of 27.8% and 8.1% of patients had a CRA in 1 eye and both eyes, respectively. Eyes with a CRA showed lower AMD stage (4-step AREDS category; P = .037) and a lower prevalence of CNV (23.0% vs 41.4%; P = .024) than those without a CRA. The prevalence of GA and macular vessel density, perfusion density, and foveal avascular zone measured by OCTA were similar in both groups. CONCLUSIONS In the eyes with a CRA, AMD stage and prevalence of CNV were lower than those in the eyes without a CRA. However, the effect of the CRA on the macular vascular system remains unclear.
Collapse
Affiliation(s)
- Dong Ik Kim
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Chang Ki Yoon
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Hyeong Gon Yu
- From the Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
20
|
Tukenmez Dikmen N, Akyol UC, Comerter D, Sadik MT, Demir N, Sumen SG, Sonmez M. THE EFFECT OF HYPERBARIC OXYGEN THERAPY ON RETINA, CHOROIDAL THICKNESS, AND CHOROIDAL VASCULARITY INDEX. Photodiagnosis Photodyn Ther 2022; 38:102854. [PMID: 35390520 DOI: 10.1016/j.pdpdt.2022.102854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the acute and cumulative effect of hyperbaric oxygen therapy (HBOT) on retina and choroid tissue in healthy eyes. MATERIAL AND METHODS Thirty-five subjects who were planned to undergo HBOT for non-ophthalmologic indications comprised the population of this prospective study. Central macular thickness (CMT), retinal nerve fiber layer (RNFL), and choroidal thickness (CT) (3 points: subfoveal area, 500 µm nasal and fovea temporal) were measured using spectral-domain optical coherence tomography (SD-OCT) before HBOT and half an hour after the 1st and 20th sessions of HBOT. The subfoveal choroidal area was segmented using ImageJ software with the binarization technique on enhanced depth imaging (EDI) OCT images. Choroidal area (CA), luminal area (LA), and stromal area (SA) were calculated. Choroidal vascularity index (CVI) was determined as the ratio between LA and CA. RESULTS The right eyes of 35 patients aged between 22 and 59 years were enrolled in the study. The mean CMT values of the patients were 259.36 ± 22.31 µm, 256.94 ± 22.72 µm, and 254.58 ± 23.02 µm before HBOT, after the 1st session, and after the 20th session, respectively. The change in CMT values before and after HBOT was statistically significant (p=0.001). When the patients' RNFL, CT, CA, SA, LA, and CVI changes before and after the HBOT were examined, no statistically significant difference was found (p>0.05). CONCLUSIONS Our study is the first to jointly evaluate the effect of HBOT on the vascular and stromal components of the choroid and macula in healthy eyes. Due to its thinning effect on the macula, it can be preferred as an adjunctive and facilitating treatment option in addition to current treatments in patients with macular edema due to retinal vascular disorders.
Collapse
Affiliation(s)
- Nejla Tukenmez Dikmen
- Department of Ophthalmology, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey.
| | - Ugur Can Akyol
- Department of Underwater and Hyperbaric Medicine, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Dogukan Comerter
- Department of Ophthalmology, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Muhammed Talha Sadik
- Department of Ophthalmology, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Nur Demir
- Department of Ophthalmology, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Selin Gamze Sumen
- Department of Underwater and Hyperbaric Medicine, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Murat Sonmez
- Department of Ophthalmology, Medical Health Sciences University, Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
21
|
Etiopathogenesis of non-exudative age-related macular degeneration (literature review). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The article presents an overview of modern publications on epidemiology, risk factors, and the main links of the etiology and pathogenesis of age-related macular degeneration (AMD). The nonexudative or “dry” form of age-related macular degeneration is a multifactorial progressive pathological process caused by hereditary predisposition, general and local disorders of lipid metabolism, negative changes in the blood supply to the eye, age-related destruction of the Bruch’s membrane and retinal pigment epithelium, the appearance of signs of local and systemic inflammation, the development of oxidative stress with the impact of toxic lipoperoxidation products on the structures of the posterior segment of the eye. Recent studies have discovered new ways of retinal pigment epithelial cell death in response to oxidative stress in AMD, in particular necroptosis, which, in addition to classical apoptosis, is considered the main mechanism of this process. It is noted that the development of AMD may be associated with an age-related decrease in the level of estrogen in women. The analysis of the data on the etiopathogenesis of age-related macular degeneration presented in the modern literature indicates the need for further research and generalization of local and general pathological processes developing in the dynamics of retinal visual function disorders by specialists of various scientific disciplines.
Collapse
|
22
|
Rosenfeld PJ, Trivizki O, Gregori G, Wang RK. An Update on the Hemodynamic Model of Age-Related Macular Degeneration. Am J Ophthalmol 2022; 235:291-299. [PMID: 34509436 DOI: 10.1016/j.ajo.2021.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To provide an update on the hemodynamic model of age-related macular degeneration (AMD). DESIGN Evidence-based perspective. METHODS Review of the literature and experience of the authors. RESULTS Choroidal hemodynamics are not the primary cause of AMD as proposed by Ephraim Friedman in 1997. However, evidence is accumulating to suggest that choroidal perfusion is an important environmental influence that contributes to our understanding of disease progression in this complex genetic disorder. Although early and intermediate AMD seem to be influenced to a large extent by the underlying genetics, the asymmetry of disease progression to the later stages of AMD cannot be explained by genetics alone. The progression of disease and the asymmetry of this progression seem to correlate with abnormalities in choroidal perfusion that can be documented by optical coherence tomography. These perfusion abnormalities in the setting of a thickened Bruch's membrane are thought to exacerbate the impaired nutritional exchange between the retinal pigment epithelium and the choriocapillaris. We propose that the genetic susceptibility to develop AMD combined with age-related changes in macular choroidal hemodynamics, such as increasing choriocapillaris perfusion deficits and decreasing choroidal vascular densities, play an important role in disease progression and may help to explain the asymmetry between eyes, particularly in the later stages of AMD. CONCLUSIONS This updated hemodynamic model of AMD focuses on disease progression and highlights the importance of age-related changes in the choroidal circulation as a major environmental influence on disease severity in eyes that are genetically susceptible to develop AMD.
Collapse
Affiliation(s)
- Philip J Rosenfeld
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA.
| | - Omer Trivizki
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA; Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv University (O.T.), Tel Aviv, Israel and the Department of Bioengineering (R.K.W.) and Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA
| | - Ruikang K Wang
- Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Wang J, Zhang H, Ji J, Wang L, Lv W, He Y, Li X, Feng G, Chen K. A histological study of atherosclerotic characteristics in age-related macular degeneration. Heliyon 2022; 8:e08973. [PMID: 35252605 PMCID: PMC8891972 DOI: 10.1016/j.heliyon.2022.e08973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
This study investigated the pathogenesis of age-related macular degeneration (AMD) using histological methods that are commonly used for atherosclerotic vascular disease (ASVD). 1 normal, 3 early dry AMD, and 1 late dry AMD eyes were obtained from the Lions Eye Bank of Oregon and systematically dissected. They were stained with hematoxylin and eosin, Oil red O, Masson, Elastica van Gieson, Alizarin red, and Prussian blue. Additionally, the normal and late dry AMD eyes were immunostained for a-smooth muscle actin, CD45, and CD68 with Nile red and DAPI. Correlations were found between severity of AMD and lipid accumulation in the deep sclera (+), numbers of drusen between the Bruch's membrane and retinal pigment epithelium (RPE) (+), amount of collagen in the deep sclera (+), and amount of elastin in the deep sclera (-) (P < 0.1). Geographic atrophy, RPE detachment, and abnormal capillary shape and distribution in the choriocapillaris were observed in the fovea of late AMD. There were no stenosis, plaque, hemorrhage, and calcification. Additionally, late AMD tended to have higher smooth muscle thicknesses of the choroidal vascular walls, lower numbers of T lymphocytes in the choroid, and higher numbers of macrophages near the RPE and in the choroid relative to normal (P < 0.1). Macrophages-derived foam cells were detected near the Bruch's membrane in late AMD. Therefore, the present study showed many histological characteristics of ASVD in AMD, which suggests an association between them; however, there were also some histological characteristics of ASVD that were not found in AMD, which indicates that there exist pathogenic differences between them. The results generally support the vascular model of AMD, but some details still need clarification.
Collapse
|
24
|
Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, Huang L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis 2022; 9:62-79. [PMID: 35005108 PMCID: PMC8720701 DOI: 10.1016/j.gendis.2021.02.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disorder and is the leading cause of incurable blindness worldwide in the elderly. Clinically, AMD initially affects the central area of retina known as the macula and it is classified as early stage to late stage (advanced AMD). The advanced AMD is classified into the nonexudative or atrophic form (dry AMD) and the exudative or neovascular form (wet AMD). More severe vision loss is typically associated with the wet form. Multiple genetic factors, lipid metabolism, oxidative stress and aging, play a role in the etiology of AMD. Dysregulation in genetic to AMD is established to 46%-71% of disease contribution, with CFH and ARMS2/HTRA1 to be the two most notable risk loci among the 103 identified AMD associated loci so far. Chronic cigarette smoking is the most proven consistently risk living habits for AMD. Deep learning algorithm has been developed based on image recognition to distinguish wet AMD and normal macula with high accuracy. Currently, anti-vascular endothelial growth factor (VEGF) therapy is highly effective at treating wet AMD. Several new generation AMD drugs and iPSC-derived RPE cell therapy are in the clinical trial stage and are promising to improve AMD treatment in the near future.
Collapse
Affiliation(s)
- Yanhui Deng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Lifeng Qiao
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Ling Wan
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
25
|
Zhang D, Robinson K, Washington I. C20D3-Vitamin A Prevents Retinal Pigment Epithelium Atrophic Changes in a Mouse Model. Transl Vis Sci Technol 2021; 10:8. [PMID: 34878528 PMCID: PMC8662574 DOI: 10.1167/tvst.10.14.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent. During the vitamin A cycle, vitamin A dimerizes, leading to vitamin A cycle byproducts, such as vitamin A dimers, in the RPE. Methods To study the consequence of vitamin A dimerization to RPE atrophic changes, we used a rodent model with accelerated vitamin A dimerization, Abca4−/−/Rdh8−/− mice, and the vitamin A analog C20D3-vitamin A to selectively ameliorate the accelerated rate of vitamin A dimerization. Results We show that ameliorating the rate of vitamin A dimerization with C20D3-vitamin A mitigates pathological changes observed in the prodromal phase of the most prevalent retinal degenerative diseases, including fundus autofluorescence changes, dark adaptation delays, and signature RPE atrophic changes. Conclusions Data demonstrate that the dimerization of vitamin A during the vitamin A cycle is sufficient alone to cause the prerequisite RPE atrophic changes thought to be responsible for the leading causes of irreversible blindness and that correcting the dimerization rate with C20D3-vitamin A may be sufficient to prevent the RPE atrophic changes. Translational Relevance Preventing the dimerization of vitamin A with the vitamin A analog C20D3-vitamin A may be sufficient to alter the clinical course of the most prevalent forms of blindness, including Stargardt disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Kiera Robinson
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY, USA.,biOOrg3.14, Buffalo, WY, USA
| |
Collapse
|
26
|
Çevik SG, Bağlı BS. Change in the Foveal Avascular Zone and Macular Capillary Network Density after Hyperbaric Oxygen Therapy in Healthy Retina. J Ophthalmic Vis Res 2021; 16:393-399. [PMID: 34394868 PMCID: PMC8358766 DOI: 10.18502/jovr.v16i3.9436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/17/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to evaluate responses in retinal tissue by swept source OCT angiography (OCT-A) to hyperoxia after hyperbaric oxygen (HBO2) therapy. Methods The study was conducted in volunteers who received HBO2 treatment but did not have any eye disease. Patients underwent detailed eye examinations including dilated fundus examination, visual acuity, and refraction before being admitted for HBO2 therapy. Measurements were made before and immediately after HBO2 therapy. Enface images of the retinal vasculature were obtained from the superficial and deep retinal plexus (SP/DP). Quantitative analysis of the vessel density (VD) and foveal avascular zone (FAZ) area was performed. Results In total, 31 patients (15 female) with healthy retina were included in the study. The mean age was 42.8 years. The mean SP vascular density measurements before HBO2 therapy for the right and left eyes were 15.18 ± 1.2 mm-1 and 15.01 ± 1.3 mm-1, respectively; the measurements after HBO2 therapy for the right and left eyes were 14.34 ± 1.4 mm-1 and 14.48 ± 1.19 mm-1. The mean DP vascular density measurements before HBO2 therapy for the right and left eyes were 16.03 ± 1.69 mm-1 and 16.1 ± 1.45 mm-1, respectively; the measurements after HBO2 therapy for the right and left eyes were 15.02 ± 1.65 mm-1 and 15.12 ± 2.16 mm-1, respectively. Reduction of mean VD in superficial and deep plexus after HBO2 was statistically significant (P = 0.001 and P = 0.000, respectively). Changes in mean FAZ area before and after HBO2 therapy were not statistically significant (P = 0.719). Conclusion The healthy retina responds to oxygen supersaturation with HBO2 therapy by eventually decreasing vascular density in all layers. These findings may be important for further studies especially related to retina and choroidal oxygenation.
Collapse
Affiliation(s)
- Sadık Görkem Çevik
- Department of Ophthalmology, Yuksek Ihtisas Education and Training Hospital, Bursa, Turkey
| | - Bekir Selim Bağlı
- Department of Underwater and Hyperbaric Medicine, Yuksek Ihtisas Education and Training Hospital, Bursa, Turkey
| |
Collapse
|
27
|
The impact of vascular risk factors on the thickness and volume of the choroid in AMD patients. Sci Rep 2021; 11:15106. [PMID: 34302055 PMCID: PMC8302717 DOI: 10.1038/s41598-021-94676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/29/2021] [Indexed: 11/08/2022] Open
Abstract
Disturbances in choroidal microcirculation may lead to the onset and progression of age-related macular degeneration (AMD). We aimed to assess changes in the choroidal volume and thickness in the macular region in AMD eyes and to investigate whether coexisting vascular risk factors alter choroidal status. We enrolled 354 AMD patients (175 dry, 179 wet AMD) and 121 healthy controls. All participants underwent a complete ophthalmologic examination and assessment of choroidal thickness and volume. A multivariate analysis adjusted for age, sex, and smoking status revealed that wet AMD was an independent factor associated with higher average thickness of the central ring area (ATC) and average volume of the central ring area (AVC) and lower choroidal vascularity index (CVI) compared to controls (β = + 0.18, p = 0.0007, β = + 0.18, p = 0.0008, respectively) and to dry AMD (β = + 0.17, p = 0.00003 for both ATC and AVC and β = - 0.30 p < 0.0001 for CVI). ATC, AVC and average volume (AV) were lower in AMD patients with hypertension and ischaemic heart disease (IHD). The duration of hypertension was inversely correlated with ATC, AVC and AV (Rs = - 0.13, p < 0.05; Rs = - 0.12; p < 0.05, Rs = - 0.12; p < 0.05, respectively) while IHD duration negatively correlated with AV (Rs = - 0.15, p < 0.05). No such associations were observed in the control group. Our findings show that the choroidal vascular system in eyes with AMD is much more susceptible to damage in the presence than in the absence of systemic vascular disease.
Collapse
|
28
|
Lejoyeux R, Benillouche J, Ong J, Errera MH, Rossi EA, Singh SR, Dansingani KK, da Silva S, Sinha D, Sahel JA, Freund KB, Sadda SR, Lutty GA, Chhablani J. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2021; 87:100997. [PMID: 34293477 DOI: 10.1016/j.preteyeres.2021.100997] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The choriocapillaris is the innermost structure of the choroid that directly nourishes the retinal pigment epithelium and photoreceptors. This article provides an overview of its hemovasculogenesis development to achieve its final architecture as a lobular vasculature, and also summarizes the current histological and molecular knowledge about choriocapillaris and its dysfunction. After describing the existing state-of-the-art tools to image the choriocapillaris, we report the findings in the choriocapillaris encountered in the most frequent retinochoroidal diseases including vascular diseases, inflammatory diseases, myopia, pachychoroid disease spectrum disorders, and glaucoma. The final section focuses on the development of imaging technology to optimize visualization of the choriocapillaris as well as current treatments of retinochoroidal disorders that specifically target the choriocapillaris. We conclude the article with pertinent unanswered questions and future directions in research for the choriocapillaris.
Collapse
Affiliation(s)
| | | | - Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Sumit R Singh
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology and Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Rothschild Foundation, 75019, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - K Bailey Freund
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, NY, USA; Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, New York University of Medicine, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - SriniVas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA, 90033, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
29
|
ASSOCIATION OF TREATMENT RESPONSE WITH QUANTITATIVE CHANGES IN CHOROIDAL NEOVASCULARIZATION AND CHOROIDAL VESSEL IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2021; 40:1704-1718. [PMID: 31725526 DOI: 10.1097/iae.0000000000002678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the association between treatment response and quantitative morphological changes in choroidal neovascularization and outer choroidal vessels using optical coherence tomography angiography (OCTA) and en face OCT in neovascular age-related macular degeneration (nAMD). METHODS We retrospectively analyzed 75 eyes of typical nAMD patients and 53 polypoidal choroidal vasculopathy eyes of 124 patients with OCTA performed at least 6 months after initial antivascular endothelial growth factor treatment. Quantitative parameters, including vessel area, vessel diameter, branch vessel length, fractal dimension, and lacunarity were analyzed based on en face images of the choroidal neovascularization and choroidal vessel in Haller's layer. Parameters associated with loss of logarithm of the minimum angle of resolution visual acuity with the basis of 0.3 and the treatment interval (good vs. poor responder based on 12 weeks) were analyzed. Analyses were conducted for "before OCTA" (initial visit to OCTA) and "after OCTA" (OCTA to 6 months post-OCTA). RESULTS In typical nAMD, visual acuity loss before OCTA was associated with a higher SD of choroidal neovascularization diameter and lower choroidal fractal dimension. Visual acuity loss after OCTA in typical nAMD was associated with higher lacunarity of the choroid. Poor responders before OCTA were not associated with any factor. Poor responders after OCTA were associated with a lower SD of outer choroidal vessel diameter in typical nAMD. In polypoidal choroidal vasculopathy, no factor was associated with clinical outcomes in either period. CONCLUSION Quantitative analyses of choroidal neovascularization on OCTA and choroidal vessels on en face OCT provide information about treatment response, including changes in visual acuity and treatment interval, in nAMD.
Collapse
|
30
|
Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT, Chew EY. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7:31. [PMID: 33958600 DOI: 10.1038/s41572-021-00265-2] [Citation(s) in RCA: 537] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in the industrialized world. AMD is characterized by accumulation of extracellular deposits, namely drusen, along with progressive degeneration of photoreceptors and adjacent tissues. AMD is a multifactorial disease encompassing a complex interplay between ageing, environmental risk factors and genetic susceptibility. Chronic inflammation, lipid deposition, oxidative stress and impaired extracellular matrix maintenance are strongly implicated in AMD pathogenesis. However, the exact interactions of pathophysiological events that culminate in drusen formation and the associated degeneration processes remain to be elucidated. Despite tremendous advances in clinical care and in unravelling pathophysiological mechanisms, the unmet medical need related to AMD remains substantial. Although there have been major breakthroughs in the treatment of exudative AMD, no efficacious treatment is yet available to prevent progressive irreversible photoreceptor degeneration, which leads to central vision loss. Compelling progress in high-resolution retinal imaging has enabled refined phenotyping of AMD in vivo. These insights, in combination with clinicopathological and genetic correlations, have underscored the heterogeneity of AMD. Hence, our current understanding promotes the view that AMD represents a disease spectrum comprising distinct phenotypes with different mechanisms of pathogenesis. Hence, tailoring therapeutics to specific phenotypes and stages may, in the future, be the key to preventing irreversible vision loss.
Collapse
Affiliation(s)
- Monika Fleckenstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Tiarnán D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Usha Chakravarthy
- Department of Ophthalmology, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Caroline C Klaver
- Department of Ophthalmology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Ophthalmology, Radboud Medical Center, Nijmegen, Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Toma C, De Cillà S, Palumbo A, Garhwal DP, Grossini E. Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants (Basel) 2021; 10:antiox10050653. [PMID: 33922463 PMCID: PMC8145578 DOI: 10.3390/antiox10050653] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Although the exact pathogenetic mechanisms leading to age-related macular degeneration (AMD) have not been clearly identified, oxidative damage in the retina and choroid due to an imbalance between local oxidants/anti-oxidant systems leading to chronic inflammation could represent the trigger event. Different in vitro and in vivo models have demonstrated the involvement of reactive oxygen species generated in a highly oxidative environment in the development of drusen and retinal pigment epithelium (RPE) changes in the initial pathologic processes of AMD; moreover, recent evidence has highlighted the possible association of oxidative stress and neovascular AMD. Nitric oxide (NO), which is known to play a key role in retinal physiological processes and in the regulation of choroidal blood flow, under pathologic conditions could lead to RPE/photoreceptor degeneration due to the generation of peroxynitrite, a potentially cytotoxic tyrosine-nitrating molecule. Furthermore, the altered expression of the different isoforms of NO synthases could be involved in choroidal microvascular changes leading to neovascularization. The purpose of this review was to investigate the different pathways activated by oxidative/nitrosative stress in the pathogenesis of AMD, focusing on the mechanisms leading to neovascularization and on the possible protective role of anti-vascular endothelial growth factor agents in this context.
Collapse
Affiliation(s)
- Caterina Toma
- Eye Clinic, University Hospital Maggiore Della Carità, 28100 Novara, Italy; (C.T.); (S.D.C.); (A.P.)
| | - Stefano De Cillà
- Eye Clinic, University Hospital Maggiore Della Carità, 28100 Novara, Italy; (C.T.); (S.D.C.); (A.P.)
- Department of Health Sciences, University East Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Aurelio Palumbo
- Eye Clinic, University Hospital Maggiore Della Carità, 28100 Novara, Italy; (C.T.); (S.D.C.); (A.P.)
| | - Divya Praveen Garhwal
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University East Piedmont “A. Avogadro”, 28100 Novara, Italy;
| | - Elena Grossini
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University East Piedmont “A. Avogadro”, 28100 Novara, Italy;
- Correspondence: ; Tel.:+39-0321-660526
| |
Collapse
|
32
|
Ma HH, Liutkevičienė R. Age-Related Macular Degeneration: What Do We Know So Far? Acta Med Litu 2021; 28:36-47. [PMID: 34393627 PMCID: PMC8311835 DOI: 10.15388/amed.2021.28.1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Ageing is a natural process that everyone experiences and nobody is an exception. With ageing, our body experiences physiological changes. In this article, the focus is made on the physiological changes of our eyes related to ageing and age-related macular degeneration (AMD), which is the most common cause of incurable visual impairment in developed countries. With ageing populations increasing in many countries, more and more patients will have AMD in a foreseeable future. In Eastern Europe, blindness due to AMD, currently, is approximately 20% and there has been an increasing trend depicted in the future. Generally, AMD can be divided into early stages and two forms in an advanced (late) stage. Advanced AMD form includes neovascular AMD (wet) and geographic atrophy (late dry), both of these are associated with substantial, progressive visual impairment. The pathogenesis of AMD is complex and, by far, not completely understood. Multiple factors have been studied, for example: environmental factor, genetic factor (complement factor H), lifestyle. It has been proved that they are linked to higher the risk of developing of AMD, however, the actual pathogenesis is not yet formulated. AMD progression can also be a culprit to certain biochemical events and molecular changes linked to inflammation and pathological angiogenesis. In nowadays, we do have diagnostic methods for both early and late forms of AMD as well as ways to prevent progression of early AMD and wet AMD. However, until now, there is still no treatment for dry AMD. This article is a brief review of AMD and may hopefully lead to some future directions in early diagnostic methods and treating dry AMD.
Collapse
Affiliation(s)
- Ho Hin Ma
- Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkevičienė
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
33
|
Edwards M, Lutty GA. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:89-119. [PMID: 33847999 DOI: 10.1007/978-3-030-66014-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Collapse
Affiliation(s)
- Malia Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
34
|
Ocular Imaging for Enhancing the Understanding, Assessment, and Management of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:33-66. [PMID: 33847997 DOI: 10.1007/978-3-030-66014-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive neuro-retinal disease and the leading cause of central vision loss among elderly individuals in the developed countries. Modern ocular imaging technologies constitute an essential component of the evaluation of these patients and have contributed extensively to our understanding of the disease. A challenge with any review of ocular imaging technologies is the rapid pace of progress and evolution of these instruments. Nonetheless, for proper and optimal use of these technologies, it is essential for the user to understand the technical principles underlying the imaging modality and their role in assessing the disease in various settings. Indeed, AMD, like many other retinal diseases, benefits from a multimodal imaging approach to optimally characterize the disease. In this chapter, we will review the various imaging technologies currently used in the assessment and management of AMD.
Collapse
|
35
|
Kim TY, Kang HG, Choi EY, Koh HJ, Kim SS, Lee JH, Kim M, Byeon SH, Lee CS. Prognostic Factors and Long-term Surgical Outcomes for Exudative Age-related Macular Degeneration with Breakthrough Vitreous Hemorrhage. KOREAN JOURNAL OF OPHTHALMOLOGY 2020; 34:281-289. [PMID: 32783420 PMCID: PMC7419239 DOI: 10.3341/kjo.2020.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose We sought to evaluate the long-term outcomes for patients with exudative age-related macular degeneration (AMD) undergoing vitrectomy for breakthrough vitreous hemorrhage and to investigate possible prognostic factors. Methods Consecutive patients treated at two high-volume referral-based tertiary hospitals between July 2006 and December 2019 were retrospectively reviewed. Surgery was performed using the standard three-port vitrectomy. The primary outcome was the change in best-corrected visual acuity (BCVA) over long-term follow-up, while secondary outcomes included the assessment of possible prognostic factors. Results Among 50 eyes from 50 patients included in this study, 23 (46%) were diagnosed with polypoidal choroidal vasculopathy (PCV) and 27 (54%) were diagnosed with neovascular AMD. Preoperative vision at the time of vitreous hemorrhage onset was 20 / 3,027 (logarithm of the minimum angle of resolution [logMAR], 2.18 ± 0.34). At 12 months after surgery, the mean BCVA improved to 20 / 873 (logMAR, 1.64 ± 0.76; p < 0.001). At 24 months, the BCVA was 20 / 853 (logMAR, 1.63 ± 0.75; p < 0.001). Univariate analysis revealed that older age (odds ratio [OR], 0.879; p = 0.007] and the presence of submacular hemorrhage (OR, 0.081; p = 0.022) were factors associated with a poor 2-year visual outcome. Multivariable regression showed that older age (OR, 0.876; p = 0.026) and neovascular AMD (as compared with PCV) (OR, 0.137; p = 0.014) were significant negative factors influencing the 2-year visual outcome. The mean injection interval prior to vitrectomy was 4.53 months, which extended to 27.64 months after vitrectomy (p = 0.028). Conclusions Younger age, the absence of submacular hemorrhage, and PCV type were associated with a favorable 2-year visual outcome after vitrectomy for vitreous hemorrhage in patients with exudative AMD. Overall, vitrectomy resulted in improved visual acuity and patients showed a decreased need for anti-vascular endothelial growth factor therapy thereafter.
Collapse
Affiliation(s)
- Tae Young Kim
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Goo Kang
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Eun Young Choi
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Hyoung Jun Koh
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hwan Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kim
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Lee SC, Tran S, Amin A, Morse LS, Moshiri A, Park SS, Yiu G. Retinal Vessel Density in Exudative and Nonexudative Age-Related Macular Degeneration on Optical Coherence Tomography Angiography. Am J Ophthalmol 2020; 212:7-16. [PMID: 31837316 PMCID: PMC7113105 DOI: 10.1016/j.ajo.2019.11.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE Although the choroid contributes to the pathogenesis of age-related macular degeneration (AMD), the role of retinal perfusion is unclear. We sought to compare retinal vascular measurements between eyes with nonexudative and exudative AMD using optical coherence tomography angiography (OCT-A). DESIGN Retrospective, cross-sectional study. METHODS OCT-A images were analyzed from 310 eyes of 182 patients (mean age ± standard deviation [SD], 78.8 ± 8.8 years) with nonexudative (54.2%) and exudative (45.8%) AMD to measure retinal vessel density (VD) from the superficial capillary plexus in the foveal, parafoveal, and full macular regions and foveal avascular zone (FAZ) area, perimeter, and circularity. Multivariate regressions were used to compare nonexudative and exudative AMD eyes and the impact of anti-vascular endothelial growth factor (anti-VEGF) treatments or geographic atrophy (GA). RESULTS In eyes with AMD, VD decreases with age in the foveal (β = -0.211, P < .001), parafoveal (β = -0.305, P < .001), and full macular regions (β = -0.295, P < .001). Eyes with exudative AMD demonstrated lower VD, especially in the parafoveal (29.8% ± 6.3% vs 33.0% ± 5.7%, P < .001) and full regions (27.9% ± 6.2% vs 31.2% ± 5.5%, P < .001) compared with nonexudative AMD. There were no differences in FAZ area, perimeter, or circularity between the 2 groups (P = .503-.907). In eyes with exudative AMD, previous anti-VEGF treatments did not impact retinal vascular measurements (P = .324-.986). Nonexudative AMD severity and presence of central GA also impacted retinal VD and FAZ morphology. CONCLUSIONS Retinal VD is decreased in eyes with exudative AMD compared with nonexudative AMD but is unaffected by anti-VEGF treatments, suggesting a retinal vascular contribution to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Sophie C Lee
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - Steven Tran
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California; Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Aana Amin
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - Lawrence S Morse
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - Susanna S Park
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California.
| |
Collapse
|
37
|
Ahsan B, Aldwaikat A, Aboud O, Ramadan A, Abu-Asab MS. Retinal and choroidal capillaries contribution to age-related macular degeneration (AMD) phenotypes in murine models of the disease. Ultrastruct Pathol 2020; 44:174-181. [PMID: 32079449 PMCID: PMC9930639 DOI: 10.1080/01913123.2020.1731039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mouse models of age-related macular degeneration (AMD) such as Ccl2-/- and Ccl2-/-/Cx3cr1-/- have not yet been fully characterized ultrastructurally. Although we have previously shown extranuclear DNA (enDNA) leakage into the cytoplasm and damaged mitochondria in the retinal pigment epithelium (RPE) of these AMD mouse models, little is known about the state of their vascular capillaries of the retina and choroid. Our ultrastructural survey shows that the aberrations were not restricted to the RPE cells, but also extended to the vasculature of the retina and choroid. Their endothelial aberrations included cytoplasmic degeneration, pyknotic DNA, hypertrophic nuclei, and loss of fenestration in addition to duplication of basement membrane and loss of density in Bruch's membrane. Moreover, the state of the vasculature in the mutant mice models suggests that the capillaries could also be active contributors to the pathological findings seen in AMD. The goal of this study is to gain insights into the early events of AMD that may lead to a better understanding of AMD's pathogenesis, improve our preventative measures, and formulate designed therapeutic regimens that are tailored to target the initial pathological events.Abbreviations: AMD: age-related macular degeneration; BM: Bruch's membrane; DPC: degenerate pericyte; EN: endothelial nucleus; enDNA: extranuclear DNA; GCL: ganglion cell layer; HEN: hypertrophic endothelial nucleus; IPL: inner plexiform layer; NFL: nerve fiber layer; OPL: outer plexiform layer; RBC: red blood cell; RPE: retinal pigment epithelium; SNPs: Single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Bisma Ahsan
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad Aldwaikat
- Division of Pulmonary and Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Orwa Aboud
- Neuro Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ali Ramadan
- Department of Pathology, Howard University Hospital, Washington, DC, USA
| | - Mones S. Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Abstract
PURPOSE To study the associations of subfoveal choroidal thickness with vascular risk factors and age-related macular degeneration. METHODS Two hundred sixty-one participants of the Alienor study had gradable enhanced-depth imaging optical coherence tomography scans of the macula and available data on vascular and genetic risk factors (assessed through face-to-face interview and fasting blood samples) and age-related macular degeneration status (assessed from retinal photographs and optical coherence tomography). Subfoveal choroidal thickness was measured manually on one horizontal scan passing through the fovea. RESULTS In a multivariate mixed linear model, subfoveal choroidal thickness was independently associated with age greater than 80 years (-21.77 μm, P = 0.02), axial length (-21.77 μm, P < 0.0001), heavy smoking (≥20 pack-years: -24.89 μm, P = 0.05), fasting blood glucose higher than 7 mmol/L (-53.17 μm, P = 0.02), and lipid-lowering treatment (+18.23, P = 0.047). After multivariate adjustment for age, sex, axial length, and vascular and genetic risk factors, subfoveal choroidal thickness was thinner in eyes with central hyperpigmentation (-45.39 μm, P = 0.006), central hypopigmentation (-44.99 μm, P = 0.001), and central pigmentary abnormalities (-44.50 μm, P = 0.001), but not in eyes with late age-related macular degeneration (-18.05 μm, P = 0.33) or soft drusen. CONCLUSION These findings indicate a relationship between vascular risk factors and choroidal thinning and suggest an early involvement of the choroid in the pathogenesis of age-related macular degeneration.
Collapse
|
39
|
Hong IH, Jung WH, Lee JH, Chang IB. Macular Pigment Optical Density in the Korean Population: a Cross Sectional Study. J Korean Med Sci 2020; 35:e30. [PMID: 32030919 PMCID: PMC7008070 DOI: 10.3346/jkms.2020.35.e30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND To evaluate the macular pigment optical density (MPOD) with age in the Korean population using the Macular Pigment Screener II (MPSII®). METHODS One hundred and twenty-six eyes were retrospectively reviewed. MPOD was measured using MPSII®, which uses a heterochromatic flicker photometry method, and the estimated values were analyzed. Spearman's correlation test was used to evaluate correlations between MPOD and age. The association between MPOD and age was determined using a simple linear regression analysis. MPODs among the four groups were compared via the post hoc analysis with Bonferroni correction, MPODs between the age-related macular degeneration (AMD) group and aged-matched healthy subjects were compared via the Mann-Whitney U test. Other risk factors for AMD were identified via a logistic regression analysis. RESULTS Estimated MPOD decreased significantly with increasing age in the general population. In the simple regression analysis, a statistically significant linear regression model was observed, and the estimated values of MPOD decreased by ?0.005 as age increased by 1 year. Aged (> 50 years) showed lower MPOD than younger (30-49 years) subjects. But, in the healthy population, the estimated MPOD values exhibited a decreasing trend with age, but there were no significant differences according to age, after excluding patients with AMD. MPOD was significantly lower in patients with AMD than in aged healthy controls. Furthermore, hypertension, dyslipidemia, and smoking were identified as risk factors for AMD. CONCLUSION MPOD measured with MPSII® reflects the MP density in healthy individuals and patients with dry AMD. Aging was not significantly associated with low MPOD in healthy population, but the presence of dry AMD was significantly associated with low MPOD. Then, low MPOD may be a risk factor for development of dry AMD. Furthermore, routine screening with MPS II® for ages 50 and older is thought to help detect early low MPOD and identify individuals who should take supplements.
Collapse
Affiliation(s)
- In Hwan Hong
- Department of Ophthalmology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Korea
| | - Woo Hyun Jung
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jae Hyup Lee
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - In Boem Chang
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
40
|
Lutty GA, McLeod DS, Bhutto IA, Edwards MM, Seddon JM. Choriocapillaris dropout in early age-related macular degeneration. Exp Eye Res 2020; 192:107939. [PMID: 31987759 DOI: 10.1016/j.exer.2020.107939] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Loss of choriocapillaris (CC) in advanced age-related macular degeneration (AMD) is well documented but changes in early AMD have not been quantified. Postmortem eyes from donors with clinically documented early AMD were examined in choroidal whole mounts to determine the area, pattern, and severity of CC loss. Choroids from postmortem human eyes without AMD (n = 7; mean age = 86.1) and from eyes with a Grade 2 clinical classification of early AMD (n = 7; mean age = 87) were immunolabeled with Ulex europaeus agglutinin (UEA) lectin-FITC to stain blood vessels. Whole mounts were imaged using confocal microscopy and image analysis was performed to determine the area of vascular changes and density of vasculature (percent vascular area, %VA). All areas evaluated had a complete RPE monolayer upon gross examination. In age-matched control eyes, the CC had broad lumens and a homogenous pattern of freely interconnecting capillaries. The mean %VA ± standard deviation in submacula of control subjects was 78.1 ± 3.25%. In eyes with early AMD, there was a significant decrease in mean %VA to 60.1 ± 10.4% (p < 0.0001). The paramacular %VA was not significantly different in eyes with or without AMD. The area of submacular choroid affected by CC dropout was 0.04 ± 0.09 mm2 in control eyes. In eyes with early AMD, the mean area affected by CC dropout was significantly increased (10.4 ± 6.1 mm2; p < 0.001). In some cases, incipient neovascular buds were observed at the border of regions with CC dropout in early AMD choroids. In conclusion, UEA lectin-labeled choroidal whole mounts from donors with clinically documented early AMD has provided a unique opportunity to examine regional changes in vascular pathology associated with choriocapillaris. The study demonstrated attenuation of submacular CC in early AMD subjects but no vascular pathology was observed outside the submacular region. While the affected area in some eyes was quite extensive histologically, these changes may not be detectable clinically using standard in vivo imaging.
Collapse
Affiliation(s)
- Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA.
| | - D Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Imran A Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Malia M Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Johanna M Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worchester, MA, USA.
| |
Collapse
|
41
|
Harris A, Guidoboni G, Siesky B, Mathew S, Verticchio Vercellin AC, Rowe L, Arciero J. Ocular blood flow as a clinical observation: Value, limitations and data analysis. Prog Retin Eye Res 2020; 78:100841. [PMID: 31987983 PMCID: PMC8908549 DOI: 10.1016/j.preteyeres.2020.100841] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Alterations in ocular blood flow have been identified as important risk factors for the onset and progression of numerous diseases of the eye. In particular, several population-based and longitudinal-based studies have provided compelling evidence of hemodynamic biomarkers as independent risk factors for ocular disease throughout several different geographic regions. Despite this evidence, the relative contribution of blood flow to ocular physiology and pathology in synergy with other risk factors and comorbidities (e.g., age, gender, race, diabetes and hypertension) remains uncertain. There is currently no gold standard for assessing all relevant vascular beds in the eye, and the heterogeneous vascular biomarkers derived from multiple ocular imaging technologies are non-interchangeable and difficult to interpret as a whole. As a result of these disease complexities and imaging limitations, standard statistical methods often yield inconsistent results across studies and are unable to quantify or explain a patient's overall risk for ocular disease. Combining mathematical modeling with artificial intelligence holds great promise for advancing data analysis in ophthalmology and enabling individualized risk assessment from diverse, multi-input clinical and demographic biomarkers. Mechanism-driven mathematical modeling makes virtual laboratories available to investigate pathogenic mechanisms, advance diagnostic ability and improve disease management. Artificial intelligence provides a novel method for utilizing a vast amount of data from a wide range of patient types to diagnose and monitor ocular disease. This article reviews the state of the art and major unanswered questions related to ocular vascular anatomy and physiology, ocular imaging techniques, clinical findings in glaucoma and other eye diseases, and mechanistic modeling predictions, while laying a path for integrating clinical observations with mathematical models and artificial intelligence. Viable alternatives for integrated data analysis are proposed that aim to overcome the limitations of standard statistical approaches and enable individually tailored precision medicine in ophthalmology.
Collapse
Affiliation(s)
- Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
| | | | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Sunu Mathew
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alice C Verticchio Vercellin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA; University of Pavia, Pavia, Italy; IRCCS - Fondazione Bietti, Rome, Italy
| | - Lucas Rowe
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Arciero
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
42
|
Sayah DN, Mazzaferri J, Ghesquière P, Duval R, Rezende F, Costantino S, Lesk MR. Non-invasive in vivo measurement of ocular rigidity: Clinical validation, repeatability and method improvement. Exp Eye Res 2020; 190:107831. [DOI: 10.1016/j.exer.2019.107831] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/05/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
|
43
|
Choudhary TR, Ball D, Ramos JF, Stefansson E, Harvey AR. Remote sensing of blood oxygenation using red-eye pupil reflection. Physiol Meas 2019; 40:12NT01. [PMID: 31805541 DOI: 10.1088/1361-6579/ab5f3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To develop a technique for remote sensing of systemic blood oxygenation using red-eye pupil reflection. APPROACH The ratio of the intensities of light from the bright pupil reflections at oxygen sensitive and isosbestic wavelengths is shown to be sensitive to the oxygenation of blood in the eye. A conventional retinal camera, fitted with an image-replicating imaging spectrometer, was used at standoff range to record snapshot spectral images of the face and eyes at eight different wavelengths. In our pilot study we measured optical-density ratios (ODRs) of pupil reflections at wavelengths of 780 nm and 800 nm, simultaneous with pulse oximetry, for ten healthy human subjects under conditions of normoxia and mild hypoxia (15% oxygen). The low absorption at these infrared wavelengths localises the sensing to the choroid. We propose that this can be used for as a proxy for systemic oximetry. MAIN RESULTS A significant reduction (P < 0.001) in ODR of the pupil images was observed during hypoxia and returned to baseline on resumption of normoxia. We demonstrate that measurement of the choroidal ODR can be used to detect changes in blood oxygenation that correlate positively with pulse oximetry and with a noise-equivalent oximetry precision of 0.5%. SIGNIFICANCE We describe a new method to remotely and non-invasively sense the oxygen saturation of choroidal blood. The methodology provides a proxy for remote sensing of cerebral and systemic blood oxygenation. We demonstrate the technique at short range but it has potential for systemic oximetry at large standoff ranges.
Collapse
Affiliation(s)
- Tushar R Choudhary
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, EH25 9RG, United Kingdom. School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
44
|
Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, Conley S. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019; 41:813-845. [PMID: 31797238 PMCID: PMC6925092 DOI: 10.1007/s11357-019-00138-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aging of the microcirculatory network plays a central role in the pathogenesis of a wide range of age-related diseases, from heart failure to Alzheimer's disease. In the eye, changes in the choroid and choroidal microcirculation (choriocapillaris) also occur with age, and these changes can play a critical role in the pathogenesis of age-related macular degeneration (AMD). In order to develop novel treatments for amelioration of choriocapillaris aging and prevention of AMD, it is essential to understand the cellular and functional changes that occur in the choroid and choriocapillaris during aging. In this review, recent advances in in vivo analysis of choroidal structure and function in AMD patients and patients at risk for AMD are discussed. The pathophysiological roles of fundamental cellular and molecular mechanisms of aging including oxidative stress, mitochondrial dysfunction, and impaired resistance to molecular stressors in the choriocapillaris are also considered in terms of their contribution to the pathogenesis of AMD. The pathogenic roles of cardiovascular risk factors that exacerbate microvascular aging processes, such as smoking, hypertension, and obesity as they relate to AMD and choroid and choriocapillaris changes in patients with these cardiovascular risk factors, are also discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay AMD by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lauren Miller
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA
| | - Illes Kovacs
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
| | - Cecília Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Baffi
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
45
|
Cantó A, Olivar T, Romero FJ, Miranda M. Nitrosative Stress in Retinal Pathologies: Review. Antioxidants (Basel) 2019; 8:antiox8110543. [PMID: 31717957 PMCID: PMC6912788 DOI: 10.3390/antiox8110543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is a gas molecule with diverse physiological and cellular functions. In the eye, NO is used to maintain normal visual function as it is involved in photoreceptor light transduction. In addition, NO acts as a rapid vascular endothelial relaxant, is involved in the control of retinal blood flow under basal conditions and mediates the vasodilator responses of different substances such as acetylcholine, bradykinin, histamine, substance P or insulin. However, the retina is rich in polyunsaturated lipid membranes and is sensitive to the action of reactive oxygen and nitrogen species. Products generated from NO (i.e., dinitrogen trioxide (N2O3) and peroxynitrite) have great oxidative damaging effects. Oxygen and nitrogen species can react with biomolecules (lipids, proteins and DNA), potentially leading to cell death, and this is particularly important in the retina. This review focuses on the role of NO in several ocular diseases, including diabetic retinopathy, retinitis pigmentosa, glaucoma or age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Antolin Cantó
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
| | - Francisco Javier Romero
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain;
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
- Correspondence: ; Tel.: +34-961369000
| |
Collapse
|
46
|
Abstract
Inflammation of the blood vessels that serve the central nervous system has been increasingly identified as an early and possibly initiating event among neurodegenerative conditions such as Alzheimer's disease and related dementias. However, the causal relevance of vascular inflammation to major retinal degenerative diseases is unresolved. Here, we describe how genetics, aging-associated changes, and environmental factors contribute to vascular inflammation in age-related macular degeneration, diabetic retinopathy, and glaucoma. We highlight the importance of mouse models in studying the underlying mechanisms and possible treatments for these diseases. We conclude that data support vascular inflammation playing a central if not primary role in retinal degenerative diseases, and this association should be a focus of future research.
Collapse
Affiliation(s)
- Ileana Soto
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, USA;
| | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA; .,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
47
|
Vascular Response to Sildenafil Citrate in Aging and Age-Related Macular Degeneration. Sci Rep 2019; 9:5049. [PMID: 30911094 PMCID: PMC6434029 DOI: 10.1038/s41598-019-41509-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/11/2019] [Indexed: 01/21/2023] Open
Abstract
Age-related macular degeneration (AMD) - the leading cause of vision loss in the elderly - share many risks factors as atherosclerosis, which exhibits loss of vascular compliance resulting from aging and oxidative stress. Here, we attempt to explore choroidal and retinal vascular compliance in patients with AMD by evaluating dynamic vascular changes using live ocular imaging following treatment with oral sildenafil citrate, a phosphodiesterase type 5 (PDE5) inhibitor and potent vasodilator. Enhanced-depth imaging optical coherence tomography (EDI-OCT) and OCT angiography (OCT-A) were performed on 46 eyes of 23 subjects, including 15 patients with non-exudative AMD in one eye and exudative AMD in the fellow eye, and 8 age-matched control subjects. Choroidal thickness, choroidal vascularity, and retinal vessel density were measured across the central macula at 1 and 3 hours after a 100 mg oral dose of sildenafil citrate. Baseline choroidal thickness was 172.1 ± 60.0 μm in non-exudative AMD eyes, 196.4 ± 89.8 μm in exudative AMD eyes, and 207.4 ± 77.7 μm in control eyes, with no difference between the 3 groups (P = 0.116). After sildenafil, choroidal thickness increased by 6.0% to 9.0% at 1 and 3 hours in all groups (P = 0.001-0.014). Eyes from older subjects were associated with choroidal thinning at baseline (P = 0.005) and showed less choroidal expansion at 1 hour and 3 hours after sildenafil (P = 0.001) regardless of AMD status (P = 0.666). The choroidal thickening appeared to be primarily attributed to expansion of the stroma rather than luminal component. Retinal vascular density remained unchanged after sildenafil in all 3 groups (P = 0.281-0.587). Together, our studies suggest that vascular response of the choroid to sildenafil decreases with age, but is not affected by the presence of non-exudative or exudative AMD, providing insight into changes in vessel compliance in aging and AMD.
Collapse
|
48
|
Ginner L, Wartak A, Salas M, Augustin M, Niederleithner M, Wurster LM, Leitgeb RA. Synthetic subaperture-based angle-independent Doppler flow measurements using single-beam line field optical coherence tomography in vivo. OPTICS LETTERS 2019; 44:967-970. [PMID: 30768032 DOI: 10.1364/ol.44.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate a synthetic subaperture-based angle-independent Doppler flow calculation, using a line field spectral domain optical coherence tomography system. The high speed of the system features a high phase stability over the volume, which is necessary to apply synthetic subapertures in the aperture plane. Thus, the flow component for each subaperture can be reconstructed in postprocessing. Capillary phantom and in vivo retinal imaging experiments were performed to validate and demonstrate angle-independent Doppler flow calculation.
Collapse
|
49
|
Garrity ST, Sarraf D, Freund KB, Sadda SR. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD48-AMD64. [PMID: 30025107 DOI: 10.1167/iovs.18-24158] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonneovascular (dry) AMD is a retinal disease with potential for significant central visual impairment. The hallmarks of this disease are macular drusen, RPE alterations, and geographic atrophy (GA). Classification schemes for nonneovascular AMD have evolved over the years as major advances in retinal imaging have enabled a greater understanding of disease pathophysiology. The original classifications of nonneovascular AMD were based on color fundus photography (CFP), while more modern schemes rely on a multimodal imaging approach. Effective diagnosis and management of nonneovascular AMD requires a thorough understanding of its multimodal imaging features as detailed in this review. Future imaging modalities and imaging biomarkers that may aid in diagnosis and management are also discussed.
Collapse
Affiliation(s)
- Sean T Garrity
- Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States.,Greater Los Angeles VA Healthcare Center, Los Angeles, California, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, New York University School of Medicine, New York, New York, United States
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
50
|
Snyder K, Yazdanyar A, Mahajan A, Yiu G. Association Between the Cilioretinal Artery and Choroidal Neovascularization in Age-Related Macular Degeneration: A Secondary Analysis From the Age-Related Eye Disease Study. JAMA Ophthalmol 2018; 136:1008-1014. [PMID: 29978186 PMCID: PMC6142983 DOI: 10.1001/jamaophthalmol.2018.2650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/08/2018] [Indexed: 02/02/2023]
Abstract
Importance A hemodynamic role in the pathogenesis of age-related macular degeneration (AMD) has been proposed, but to our knowledge, an association between retinal vasculature and late AMD has not been investigated. Objective To determine whether the presence and location of a cilioretinal artery may be associated with the risk of late AMD in the Age-Related Eye Disease Study (AREDS). Design, Setting, and Participants Retrospective analysis of prospective, randomized clinical trial data from 3647 AREDS participants. Fundus photographs of AREDS participants were reviewed by 2 masked graders for the presence or absence of a cilioretinal artery and whether any branch extended within 500 μm of the central macula. Multivariate regressions were used to determine the association of the cilioretinal artery and vessel location, adjusted for age, sex, and smoking status, with the prevalence of choroidal neovascularization (CNV) or central geographic atrophy (CGA) and AMD severity score for eyes at randomization and progression at 5 years. Main Outcomes and Measures Association of cilioretinal artery with prevalence and 5-year incidence of CNV or CGA. Results Among AREDS participants analyzed, mean (SD) age was 69.0 (5.0) years, with 56.3% female, 46.6% former smokers, and 6.9% current smokers. A total of 26.9% of patients had a cilioretinal artery in 1 eye, and 8.4% had the vessel bilaterally. At randomization, eyes with a cilioretinal artery had a lower prevalence of CNV (5.0% vs 7.6%; OR, 0.66; 95% CI, 0.51-0.85; P = .001) but no difference in CGA (1.1% vs 0.8%; OR, 1.33; 95% CI, 0.76-2.32; P = .31). In eyes without late AMD, those with a cilioretinal artery also had a lower mean (SD) AMD severity score (3.00 [2.35] vs 3.19 [2.40]; P = .02). At 5 years, eyes at risk with a cilioretinal artery had lower rates of progression to CNV (4.1% vs 5.5%; OR, 0.75; 95% CI, 0.56-1.00; P = .05) but no difference in developing CGA (2.2% vs 2.7%; OR, 0.83; 95% CI, 0.56-1.23; P = .35) or change in AMD severity score (0.65 [1.55] vs 0.73 [1.70]; P = .11). In patients with a unilateral cilioretinal artery, eyes with the vessel showed a lower prevalence of CNV than fellow eyes (4.7% vs 7.2%; P = .01). Conclusions and Relevance The presence of a cilioretinal artery is associated with a lower risk of developing CNV, but not CGA, suggesting a possible retinal hemodynamic contribution to the pathogenesis of neovascular AMD. Trial Registration ClinicalTrials.gov Identifier: NCT00000145.
Collapse
Affiliation(s)
- Kiersten Snyder
- Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Amirfarbod Yazdanyar
- Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento
| | - Aditi Mahajan
- Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento
| | - Glenn Yiu
- Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento
| |
Collapse
|