1
|
Caron JM, Han X, Contois L, Vary CPH, Brooks PC. The HU177 Collagen Epitope Controls Melanoma Cell Migration and Experimental Metastasis by a CDK5/YAP-Dependent Mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2356-2368. [PMID: 30118657 PMCID: PMC6180252 DOI: 10.1016/j.ajpath.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Stromal components not only help form the structure of neoplasms such as melanomas, but they also functionally contribute to their malignant phenotype. Thus, uncovering signaling pathways that integrate the behavior of both tumor and stromal cells may provide unique opportunities for the development of more effective strategies to control tumor progression. In this regard, extracellular matrix-mediated signaling plays a role in coordinating the behavior of both tumor and stromal cells. Here, evidence is provided that targeting a cryptic region of the extracellular matrix protein collagen (HU177 epitope) inhibits melanoma tumor growth and metastasis and reduces angiogenesis and the accumulation of α-SMA-expressing stromal cell in these tumors. The current study suggests that the ability of the HU177 epitope to control melanoma cell migration and metastasis depends on the transcriptional coactivator Yes-associated protein (YAP). Melanoma cell interactions with the HU177 epitope promoted nuclear accumulation of YAP by a cyclin-dependent kinase-5-associated mechanism. These findings provide new insights into the mechanism by which the anti-HU177 antibody inhibits metastasis, and uncovers an unknown signaling pathway by which the HU177 epitope selectively reprograms melanoma cells by regulating nuclear localization of YAP. This study helps to define a potential new therapeutic strategy to control melanoma tumor growth and metastasis that might be used alone or in combination with other therapeutics.
Collapse
Affiliation(s)
- Jennifer M Caron
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - XiangHua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Liangru Contois
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.
| |
Collapse
|
2
|
Trial J, Cieslik KA. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am J Physiol Heart Circ Physiol 2018; 315:H745-H755. [PMID: 29906228 DOI: 10.1152/ajpheart.00237.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cardiac fibroblast plays a central role in tissue homeostasis and in repair after injury. With aging, dysregulated cardiac fibroblasts have a reduced capacity to activate a canonical transforming growth factor-β-Smad pathway and differentiate poorly into contractile myofibroblasts. That results in the formation of an insufficient scar after myocardial infarction. In contrast, in the uninjured aged heart, fibroblasts are activated and acquire a profibrotic phenotype that leads to interstitial fibrosis, ventricular stiffness, and diastolic dysfunction, all conditions that may lead to heart failure. There is an apparent paradox in aging, wherein reparative fibrosis is impaired but interstitial, adverse fibrosis is augmented. This could be explained by analyzing the effectiveness of signaling pathways in resident fibroblasts from young versus aged hearts. Whereas defective signaling by transforming growth factor-β leads to insufficient scar formation by myofibroblasts, enhanced activation of the ERK1/2 pathway may be responsible for interstitial fibrosis mediated by activated fibroblasts. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/fibroblast-phenotypic-changes-in-the-aging-heart/ .
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
3
|
Caron JM, Ames JJ, Contois L, Liebes L, Friesel R, Muggia F, Vary CPH, Oxburgh L, Brooks PC. Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1649-61. [PMID: 27216148 DOI: 10.1016/j.ajpath.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10β1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10β1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors.
Collapse
Affiliation(s)
- Jennifer M Caron
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Jacquelyn J Ames
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Liangru Contois
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Leonard Liebes
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Robert Friesel
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Franco Muggia
- New York University Langone Medical Center, Division of Hematology and Medical Oncology, New York, New York
| | - Calvin P H Vary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Leif Oxburgh
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Peter C Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine.
| |
Collapse
|
4
|
Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo. J Control Release 2015; 217:191-201. [PMID: 26365781 DOI: 10.1016/j.jconrel.2015.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 01/09/2023]
Abstract
Therapeutic angiogenesis holds great potential for a myriad of tissue engineering and regenerative medicine approaches. While a number of peptides have been identified with pro-angiogenic behaviors, therapeutic efficacy is limited by poor tissue localization and persistence. Therefore, poly(ethylene glycol) hydrogels providing sustained, enzymatically-responsive peptide release were exploited for peptide delivery. Two pro-angiogenic peptide drugs, SPARC113 and SPARC118, from the Secreted Protein Acidic and Rich in Cysteine, were incorporated into hydrogels as crosslinking peptides flanked by matrix metalloproteinase (MMP) degradable substrates. In vitro testing confirmed peptide drug bioactivity requires sustained delivery. Furthermore, peptides retain bioactivity with residual MMP substrates present after hydrogel release. Incorporation into hydrogels achieved enzymatically-responsive bulk degradation, with peptide release in close agreement with hydrogel mass loss and released peptides retaining bioactivity. Interestingly, SPARC113 and SPARC118-releasing hydrogels had significantly different degradation time constants in vitro (1.16 and 8.77×10(-2) h(-1), respectively), despite identical MMP degradable substrates. However, upon subcutaneous implantation, both SPARC113 and SPARC118 hydrogels exhibited similar degradation constants of ~1.45×10(-2) h(-1), and resulted in significant ~1.65-fold increases in angiogenesis in vivo compared to controls. Thus, these hydrogels represent a promising pro-angiogenic approach for applications such as tissue engineering and ischemic tissue disorders.
Collapse
|
5
|
A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci 2015; 16:11294-322. [PMID: 25993296 PMCID: PMC4463701 DOI: 10.3390/ijms160511294] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/29/2015] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is due to the blockage of the arteries supplying blood to the lower limbs usually secondary to atherosclerosis. The most severe clinical manifestation of PAD is critical limb ischemia (CLI), which is associated with a risk of limb loss and mortality due to cardiovascular events. Currently CLI is mainly treated by surgical or endovascular revascularization, with few other treatments in routine clinical practice. There are a number of problems with current PAD management strategies, such as the difficulty in selecting the appropriate treatments for individual patients. Many patients undergo repeated attempts at revascularization surgery, but ultimately require an amputation. There is great interest in developing new methods to identify patients who are unlikely to benefit from revascularization and to improve management of patients unsuitable for surgery. Circulating biomarkers that predict the progression of PAD and the response to therapies could assist in the management of patients. This review provides an overview of the pathophysiology of PAD and examines the association between circulating biomarkers and PAD presence, severity and prognosis. While some currently identified circulating markers show promise, further larger studies focused on the clinical value of the biomarkers over existing risk predictors are needed.
Collapse
|
6
|
Young K, Tweedie E, Conley B, Ames J, FitzSimons M, Brooks P, Liaw L, Vary CPH. BMP9 Crosstalk with the Hippo Pathway Regulates Endothelial Cell Matricellular and Chemokine Responses. PLoS One 2015; 10:e0122892. [PMID: 25909848 PMCID: PMC4409298 DOI: 10.1371/journal.pone.0122892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Endoglin is a type III TGFβ auxiliary receptor that is upregulated in endothelial cells during angiogenesis and, when mutated in humans, results in the vascular disease hereditary hemorrhagic telangiectasia (HHT). Though endoglin has been implicated in cell adhesion, the underlying molecular mechanisms are still poorly understood. Here we show endoglin expression in endothelial cells regulates subcellular localization of zyxin in focal adhesions in response to BMP9. RNA knockdown of endoglin resulted in mislocalization of zyxin and altered formation of focal adhesions. The mechanotransduction role of focal adhesions and their ability to transmit regulatory signals through binding of the extracellular matrix are altered by endoglin deficiency. BMP/TGFβ transcription factors, SMADs, and zyxin have recently been implicated in a newly emerging signaling cascade, the Hippo pathway. The Hippo transcription coactivator, YAP1 (yes-associated protein 1), has been suggested to play a crucial role in mechanotransduction and cell-cell contact. Identification of BMP9-dependent nuclear localization of YAP1 in response to endoglin expression suggests a mechanism of crosstalk between the two pathways. Suppression of endoglin and YAP1 alters BMP9-dependent expression of YAP1 target genes CCN1 (cysteine-rich 61, CYR61) and CCN2 (connective tissue growth factor, CTGF) as well as the chemokine CCL2 (monocyte chemotactic protein 1, MCP-1). These results suggest a coordinate effect of endoglin deficiency on cell matrix remodeling and local inflammatory responses. Identification of a direct link between the Hippo pathway and endoglin may reveal novel mechanisms in the etiology of HHT.
Collapse
Affiliation(s)
- Kira Young
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Eric Tweedie
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
| | - Barbara Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
| | - Jacquelyn Ames
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - MaryLynn FitzSimons
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Peter Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
- * E-mail:
| |
Collapse
|
7
|
Meisner JK, Annex BH, Price RJ. Despite normal arteriogenic and angiogenic responses, hind limb perfusion recovery and necrotic and fibroadipose tissue clearance are impaired in matrix metalloproteinase 9-deficient mice. J Vasc Surg 2014; 61:1583-94.e1-10. [PMID: 24582703 DOI: 10.1016/j.jvs.2014.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The relative contributions of arteriogenesis, angiogenesis, and ischemic muscle tissue composition toward reperfusion after arterial occlusion are largely unknown. Differential loss of bone marrow-derived cell (BMC) matrix metalloproteinase 9 (MMP9), which has been implicated in all of these processes, was used to assess the relative contributions of these processes during limb reperfusion. METHODS We compared collateral growth (arteriogenesis), capillary growth (angiogenesis), and ischemic muscle tissue composition after femoral artery ligation in FVB/NJ mice that had been reconstituted with bone marrow from wild-type or MMP9(-/-) mice. RESULTS Laser Doppler perfusion imaging confirmed decreased reperfusion capacity in mice with BMC-specific loss of MMP9; however, collateral arteriogenesis was not affected. Furthermore, when accounting for the fact that muscle tissue composition changes markedly with ischemia (ie, necrotic, fibroadipose, and regenerating tissue regions are present), angiogenesis was also unaffected. Instead, BMC-specific loss of MMP9 caused an increase in the proportion of necrotic and fibroadipose tissue, which showed the strongest correlation with poor perfusion recovery. Similarly, the reciprocal loss of MMP9 from non-BMCs showed similar deficits in perfusion and tissue composition without affecting arteriogenesis. CONCLUSIONS By concurrently analyzing arteriogenesis, angiogenesis, and ischemic tissue composition, we determined that the loss of BMC-derived or non-BMC-derived MMP9 impairs necrotic and fibroadipose tissue clearance after femoral artery ligation, despite normal arteriogenic and angiogenic vascular growth. These findings imply that therapeutic revascularization strategies for treating peripheral arterial disease may benefit from additionally targeting necrotic tissue clearance or skeletal muscle regeneration, or both.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va
| | - Brian H Annex
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Va; Cardiovascular Research Center, University of Virginia, Charlottesville, Va
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va; Cardiovascular Research Center, University of Virginia, Charlottesville, Va.
| |
Collapse
|
8
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Res 2012; 22:1-8. [PMID: 22108608 DOI: 10.1097/cmr.0b013e32834e6aa0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of melanoma subtypes into prognostically relevant and therapeutically insightful categories has been a challenge since the first description of melanoma in the 1800s. One limitation has been the assumption that the two most common histological subtypes of melanoma, superficial spreading and nodular, evolve according to a linear model of progression, as malignant melanocytes spread radially and then invade vertically. However, recent clinical, pathological, and molecular data indicate that these two histological subtypes might evolve as distinct entities. Here, we review the published data that support distinct molecular characterization of superficial spreading and nodular melanoma, the clinical significance of this distinction including prognostic relevance and the therapeutic implications.
Collapse
|
10
|
Meisner JK, Price RJ. Spatial and temporal coordination of bone marrow-derived cell activity during arteriogenesis: regulation of the endogenous response and therapeutic implications. Microcirculation 2010; 17:583-99. [PMID: 21044213 PMCID: PMC2974339 DOI: 10.1111/j.1549-8719.2010.00051.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arterial occlusive disease is the leading cause of morbidity and mortality throughout the developed world, which creates a significant need for effective therapies to halt disease progression. Despite success of animal and small-scale human therapeutic arteriogenesis studies, this promising concept for treating arterial occlusive disease has yielded largely disappointing results in large-scale clinical trials. One reason for this lack of successful translation is that endogenous arteriogenesis is highly dependent on a poorly understood sequence of events and interactions between bone marrow derived cells (BMCs) and vascular cells, which makes designing effective therapies difficult. We contend that the process follows a complex, ordered sequence of events with multiple, specific BMC populations recruited at specific times and locations. Here, we present the evidence suggesting roles for multiple BMC populations-from neutrophils and mast cells to progenitor cells-and propose how and where these cell populations fit within the sequence of events during arteriogenesis. Disruptions in these various BMC populations can impair the arteriogenesis process in patterns that characterize specific patient populations. We propose that an improved understanding of how arteriogenesis functions as a system can reveal individual BMC populations and functions that can be targeted for overcoming particular impairments in collateral vessel development.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
11
|
Singh NK, Quyen DV, Kundumani-Sridharan V, Brooks PC, Rao GN. AP-1 (Fra-1/c-Jun)-mediated induction of expression of matrix metalloproteinase-2 is required for 15S-hydroxyeicosatetraenoic acid-induced angiogenesis. J Biol Chem 2010; 285:16830-43. [PMID: 20353950 DOI: 10.1074/jbc.m110.106187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the involvement of matrix metalloproteinases (MMPs) in 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE)-induced angiogenesis, we have studied the role of MMP-2. 15(S)-HETE induced MMP-2 expression and activity in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Inhibition of MMP-2 activity or depletion of its levels attenuated 15(S)-HETE-induced HDMVEC migration, tube formation, and Matrigel plug angiogenesis. 15(S)-HETE also induced Fra-1 and c-Jun expression in a Rac1-MEK1-JNK1-dependent manner. In addition, 15(S)-HETE-induced MMP-2 expression and activity were mediated by Rac1-MEK1-JNK1-dependent activation of AP-1 (Fra-1/c-Jun). Cloning and site-directed mutagenesis of MMP-2 promoter revealed that AP-1 site proximal to the transcriptional start site is required for 15(S)-HETE-induced MMP-2 expression, and Fra-1 and c-Jun are the essential components of AP-1 that bind to MMP-2 promoter in response to 15(S)-HETE. Hind limb ischemia led to an increase in MEK1 and JNK1 activation and Fra-1, c-Jun, and MMP-2 expression resulting in enhanced neovascularization and recovery of blood perfusion in wild-type mice as compared with 12/15-Lox(-/-) mice. Together, these results provide the first direct evidence for a role of 12/15-Lox-12/15(S)-HETE axis in the regulation of ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
12
|
Davis GE. Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events. J Mol Cell Cardiol 2009; 48:454-60. [PMID: 19751741 DOI: 10.1016/j.yjmcc.2009.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/18/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
This review addresses new concepts related to the importance of how cells within the cardiovascular system respond to matricryptic sites generated from the extracellular matrix (ECM) following tissue injury. A model is presented whereby matricryptic sites exposed from the ECM result in activation of multiple cell surface receptors including integrins, scavenger receptors, and toll-like receptors which together are hypothesized to coactivate downstream signaling pathways which alter cell behaviors following tissue injury. Of great interest are the relationships between matricryptic fragments of ECM called matricryptins and other stimuli that activate cells during injury states such as released components from cells (DNA, RNA, cytoskeletal components such as actin) or products from infectious agents in innate immunity responses. These types of cell activating molecules, which are composed of repeating molecular elements, are known to interact with pattern recognition receptors that (i) are expressed from cell surfaces, (ii) are released from cells following tissue injury, or (iii) circulate as components of plasma. Thus, cell recognition of matricryptic sites from the ECM appears to be an important component of a broad cell and tissue sensory system to detect and respond to environmental cues generated following varied types of tissue injury.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
13
|
Contois L, Akalu A, Brooks PC. Integrins as "functional hubs" in the regulation of pathological angiogenesis. Semin Cancer Biol 2009; 19:318-28. [PMID: 19482089 DOI: 10.1016/j.semcancer.2009.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/20/2009] [Indexed: 02/07/2023]
Abstract
It is well accepted that complex biological processes such as angiogenesis are not controlled by a single family of molecules or individually isolated signaling pathways. In this regard, new insight into the interconnected mechanisms that regulate angiogenesis might be gained by examining this process from a more global network perspective. The coordination of signaling cues from both outside and inside many different cell types is required for the successful completion of angiogenesis. Evidence is accumulating that the multifunctional integrin family of cell adhesion receptors represent an important group of molecules that play active roles in sensing, integrating, and distributing a diverse set of signals that regulate many cellular events required for angiogenesis. Given the ability of integrins to bind numerous extracellular ligands and transmit signals in a bi-directional fashion, we will discuss the multiple ways by which integrins may serve as a functional hub during pathological angiogenesis. In addition, we will highlight potential imaging and therapeutic strategies based on the expanding new insight into integrin function.
Collapse
Affiliation(s)
- Liangru Contois
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough, ME 04074, United States
| | | | | |
Collapse
|
14
|
Papazafiropoulou A, Tentolouris N. Matrix metalloproteinases and cardiovascular diseases. Hippokratia 2009; 13:76-82. [PMID: 19561775 PMCID: PMC2683462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Matrix metalloproteinases (MMPs) are extracellular enzymes that are important in many physiologic and pathologic processes. Their activity is regulated mainly by tissue inhibitors of metalloproteinases (TIMPs). MMPs expression is related with the classical cardiovascular risk factors as well as with inflammation. They play a central role in atherosclerosis, plaque formation, platelet aggregation, acute coronary syndrome, restenosis, aortic aneurysms and peripheral vascular disease. Many studies have shown that commonly prescribed antihypertensive medications, glitazones and statins may influence MMPs activity. The aim of the review is to present literature data on the role of MMPs and their inhibitors in cardiovascular disease.
Collapse
Affiliation(s)
- A Papazafiropoulou
- Department of Propaedeutic Medicine, Laiko Hospital, Athens University Medical School, Athens, Greece.
| | | |
Collapse
|
15
|
Ng B, Zakrzewski J, Warycha M, Christos PJ, Bajorin DF, Shapiro RL, Berman RS, Pavlick AC, Polsky D, Mazumdar M, Montgomery A, Liebes L, Brooks PC, Osman I. Shedding of distinct cryptic collagen epitope (HU177) in sera of melanoma patients. Clin Cancer Res 2008; 14:6253-8. [PMID: 18829505 DOI: 10.1158/1078-0432.ccr-07-4992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Extracellular matrix remodeling during tumor growth plays an important role in angiogenesis. Our preclinical data suggest that a newly identified cryptic epitope (HU177) within collagen type IV regulates endothelial and melanoma cell adhesion in vitro and angiogenesis in vivo. In this study, we investigated the clinical relevance of HUI77 shedding in melanoma patient sera. EXPERIMENTAL DESIGN Serum samples from 291 melanoma patients prospectively enrolled at the New York University Medical Center and 106 control subjects were analyzed for HU177 epitope concentration by a newly developed sandwich ELISA assay. HU177 serum levels were then correlated with clinical and pathologic parameters. RESULTS Mean HU177 epitope concentration was 5.8 ng/mL (range, 0-139.8 ng/mL). A significant correlation was observed between HU177 concentration and nodular melanoma histologic subtype [nodular, 10.3 +/- 1.6 ng/mL (mean +/- SE); superficial spreading melanoma, 4.5 +/- 1.1 ng/mL; all others, 6.1 +/- 2.1 ng/mL; P = 0.01 by ANOVA test]. Increased HU177 shedding also correlated with tumor thickness (< or =1.00 mm, 3.8 +/- 1.1 ng/mL; 1.01-3.99 mm, 8.7 +/- 1.3 ng/mL; > or =4.00 mm, 10.3 +/- 2.4 ng/mL; P = 0.003 by ANOVA). After multivariate analysis controlling for thickness, the correlation between higher HU177 concentration and nodular subtype remained significant (P = 0.03). The mean HU177 epitope concentration in control subjects was 2.4 ng/mL. CONCLUSIONS We report that primary melanoma can induce detectable changes in systemic levels of cryptic epitope shedding. Our data also support that nodular melanoma might be biologically distinct compared with superficial spreading type melanoma. As targeted interventions against cryptic collagen epitopes are currently undergoing phase I clinical trial testing, these findings indicate that patients with nodular melanoma may be more susceptible to such targeted therapies.
Collapse
Affiliation(s)
- Bruce Ng
- Department of Dermatology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hobeika MJ, Edlin RS, Muhs BE, Sadek M, Gagne PJ. Matrix Metalloproteinases in Critical Limb Ischemia. J Surg Res 2008; 149:148-54. [DOI: 10.1016/j.jss.2007.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 03/14/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
|
17
|
Krady MM, Zeng J, Yu J, MacLauchlan S, Skokos EA, Tian W, Bornstein P, Sessa WC, Kyriakides TR. Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:879-91. [PMID: 18688033 DOI: 10.2353/ajpath.2008.080128] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thrombospondin 2 (TSP2) can inhibit angiogenesis in vitro by limiting proliferation and inducing apoptosis of endothelial cells (ECs). TSP2 can also modulate the extracellular levels of gelatinases (matrix metalloproteases, MMPs) and potentially influence the remodeling of the extracellular matrix (ECM). Here, we tested the hypothesis that by regulating MMPs, TSP2 could alter EC-ECM interactions. By using a three-dimensional angiogenesis assay, we show that TSP2, but not TSP1, limited angiogenesis by decreasing gelatinolytic activity in situ. Furthermore, TSP2-null fibroblast-derived ECM, which contains irregular collagen fibrils, was more permissive for EC migration. Investigation of the role of TSP2 in physiological angiogenesis in vivo, using excision of the left femoral artery in both TSP2-null and wild-type mice, revealed that TSP2-null mice displayed accelerated recovery of blood flow. This increase was attributable, in part, to an enhanced arterial network in TSP2-null muscles of the upper limb. Angiogenesis in the lower limb was also increased and was associated with increased MMP-9 deposition and gelatinolytic activity. The observed changes correlated with the temporal expression of TSP2 in the ischemic muscle of wild-type mice. Taken together, our observations implicate the matrix-modulating activity of TSP2 as a mechanism by which physiological angiogenesis is inhibited.
Collapse
Affiliation(s)
- Marie M Krady
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06536-9812, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cretu A, Brooks PC. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 2008; 213:391-402. [PMID: 17657728 DOI: 10.1002/jcp.21222] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the malignant phenotype of a given tumor is dependent not only on the intrinsic characteristics of tumor cells, but also on the cooperative interactions of non-neoplastic cells, soluble secreted factors and the non-cellular solid-state ECM network that comprise the tumor microenvironment. Given the ability of the tumor microenvironment to regulate the cellular phenotype, recent efforts have focused on understanding the molecular mechanisms by which cells sense, assimilate, interpret, and ultimately respond to their immediate surroundings. Exciting new studies are beginning to unravel the complex interactions between the numerous cell types and regulatory factors within the tumor microenvironment that function cooperatively to control tumor cell invasion and metastasis. Here, we will focus on studies concerning a common theme, which is the central importance of the non-cellular solid-state compartment as a master regulator of the malignant phenotype. We will highlight the non-cellular solid-state compartment as a relatively untapped source of therapeutic and imaging targets and how cellular interactions with these targets may regulate tumor metastasis.
Collapse
Affiliation(s)
- Alexandra Cretu
- Department of Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
19
|
Hobeika MJ, Thompson RW, Muhs BE, Brooks PC, Gagne PJ. Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg 2007; 45:849-57. [PMID: 17398401 DOI: 10.1016/j.jvs.2006.09.066] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/28/2006] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular matrix-modifying enzymes that are important in many physiologic and pathologic vascular processes. Dysregulation of MMP activity has been associated with common vascular diseases such as atherosclerotic plaque formation, abdominal aortic aneurysms, and critical limb ischemia. For this reason, MMPs have become an important focus for basic science studies and clinical investigations by vascular biology researchers. This article reviews the recent literature, summarizing our current understanding of the role of MMPs in the pathogenesis of various peripheral vascular disease states. In addition, the importance of MMPs in the future diagnosis and treatment of peripheral vascular disease is discussed.
Collapse
Affiliation(s)
- Mark J Hobeika
- Department of Surgery, New York University School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
20
|
Cretu A, Roth JM, Caunt M, Akalu A, Policarpio D, Formenti S, Gagne P, Liebes L, Brooks PC. Disruption of Endothelial Cell Interactions with the Novel HU177 Cryptic Collagen Epitope Inhibits Angiogenesis. Clin Cancer Res 2007; 13:3068-78. [PMID: 17505010 DOI: 10.1158/1078-0432.ccr-06-2342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The importance of cellular communication with the extracellular matrix in regulating cellular invasion is well established. Selective disruption of communication links between cells and the local microenvironment by specifically targeting non-cellular matrix-immobilized cryptic extracellular matrix epitopes may represent an effective new clinical approach to limit tumor-associated angiogenesis. Therefore, we sought to determine whether the HU177 cryptic collagen epitope plays a functional role in regulating angiogenesis in vivo. EXPERIMENTAL DESIGN We examined the expression and characterized the HU177 cryptic collagen epitope in vitro and in vivo using immunohistochemistry and ELISA. We examined potential mechanisms by which this cryptic collagen epitope may regulate angiogenesis using in vitro cell adhesion, migration, proliferation, and biochemical assays. Finally, we examined the whether blocking cellular interactions with the HU177 cryptic epitope plays a role in angiogenesis and tumor growth in vivo using the chick embryo model. RESULTS The HU177 cryptic epitope was selectively exposed within tumor blood vessel extracellular matrix, whereas little was associated with quiescent vessels. An antibody directed to this cryptic site selectively inhibited endothelial cell adhesion, migration, and proliferation on denatured collagen type IV and induced increased levels of cyclin-dependent kinase inhibitor p27(KIP1). Systemic administration of mAb HU177 inhibited cytokine- and tumor-induced angiogenesis in vivo. CONCLUSIONS We provide evidence for a new functional cryptic regulatory element within collagen IV that regulates tumor angiogenesis. These findings suggest a novel and highly selective approach for regulating angiogenesis by targeting a non-cellular cryptic collagen epitope.
Collapse
Affiliation(s)
- Alexandra Cretu
- Department of Radiation Oncology, The New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Akalu A, Roth JM, Caunt M, Policarpio D, Liebes L, Brooks PC. Inhibition of Angiogenesis and Tumor Metastasis by Targeting a Matrix Immobilized Cryptic Extracellular Matrix Epitope in Laminin. Cancer Res 2007; 67:4353-63. [PMID: 17483349 DOI: 10.1158/0008-5472.can-06-0482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis and tumor metastasis depend on extracellular matrix (ECM) remodeling and subsequent cellular interactions with these modified proteins. An in-depth understanding of how both endothelial and tumor cells use matrix-immobilized cryptic ECM epitopes to regulate invasive cell behavior may lead to the development of novel strategies for the treatment of human tumors. However, little is known concerning the existence and the functional significance of cryptic laminin epitopes in regulating angiogenesis and tumor cell metastasis. Here, we report the isolation and characterization of a synthetic peptide that binds to a cryptic epitope in laminin. The STQ peptide selectively bound denatured and proteolyzed laminin but showed little interaction with native laminin. The cryptic laminin epitope recognized by this peptide was selectively exposed within malignant melanoma in vivo, whereas little if any was detected in normal mouse skin. Moreover, the STQ peptide selectively inhibited endothelial and tumor cell adhesion, migration, and proliferation in vitro and inhibited angiogenesis, tumor growth, and experimental metastasis in vivo. This inhibitory activity was associated with a selective up-regulation of the cyclin-dependent kinase inhibitor P27(KIP1) and induction of cellular senescence. These novel findings suggest the existence of functionally relevant cryptic laminin epitopes in vivo and that selective targeting of these laminin epitopes may represent an effective new strategy for the treatment of malignant tumors by affecting both the endothelial and tumor cell compartments.
Collapse
Affiliation(s)
- Abebe Akalu
- Department of Radiation Oncology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
22
|
Roth JM, Caunt M, Cretu A, Akalu A, Policarpio D, Li X, Gagne P, Formenti S, Brooks PC. Inhibition of experimental metastasis by targeting the HUIV26 cryptic epitope in collagen. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1576-86. [PMID: 16651624 PMCID: PMC1606585 DOI: 10.2353/ajpath.2006.050176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metastasis from the primary tumor to distant sites involves an array of molecules that function in an integrated manner. Proteolytic remodeling and subsequent tumor cell interactions with the extracellular matrix regulate tumor invasion. In previous studies, we have identified a cryptic epitope (HUIV26) that is specifically exposed after alterations in the triple helical structure of type IV collagen. Exposure of this cryptic epitope plays a fundamental role in the regulation of angiogenesis in vivo. However, little is known concerning the ability of tumor cells to interact with this cryptic site or whether this site regulates tumor cell metastasis in vivo. In this regard, many of the same cellular processes that regulate angiogenesis also contribute to tumor metastasis. Here we provide evidence that tumor cells such as B16F10 melanoma interact with denatured collagen type IV in part by recognizing the HUIV26 cryptic site. Systemic administration of a HUIV26 monoclonal antibody inhibited experimental metastasis of B16F10 melanoma in vivo. Taken together, our findings suggest that tumor cell interactions with the HUIV26 cryptic epitope play an important role in regulating experimental metastasis and that this cryptic element may represent a therapeutic target for controlling the spread of tumor cells to distant sites.
Collapse
Affiliation(s)
- Jennifer M Roth
- Department of Radiation Oncology, The New York University Cancer Institute, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|