1
|
Noll NA, Lal H, Merryman WD. Mouse Models of Heart Failure with Preserved or Reduced Ejection Fraction. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1596-1608. [PMID: 32343958 DOI: 10.1016/j.ajpath.2020.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Heart failure (HF) is a chronic, complex condition with increasing incidence worldwide, necessitating the development of novel therapeutic strategies. This has led to the current clinical strategies, which only treat symptoms of HF without addressing the underlying causes. Multiple animal models have been developed in an attempt to recreate the chronic HF phenotype that arises following a variety of myocardial injuries. Although significant strides have been made in HF research, an understanding of more specific mechanisms will require distinguishing models that resemble HF with preserved ejection fraction (HFpEF) from those with reduced ejection fraction (HFrEF). Therefore, current mouse models of HF need to be re-assessed to determine which of them most closely recapitulate the specific etiology of HF being studied. This will allow for the development of therapies targeted specifically at HFpEF or HFrEF. This review will summarize the commonly used mouse models of HF and discuss which aspect of human HF each model replicates, focusing on whether HFpEF or HFrEF is induced, to allow better investigation into pathophysiological mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Natalie A Noll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Hind Lal
- Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
2
|
NOX2 amplifies acetaldehyde-mediated cardiomyocyte mitochondrial dysfunction in alcoholic cardiomyopathy. Sci Rep 2016; 6:32554. [PMID: 27624556 PMCID: PMC5021994 DOI: 10.1038/srep32554] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023] Open
Abstract
Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2•−) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2−/−) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2−/− mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91phox (NOX2/gp91phox) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2−/−/gp91phox−/− mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2•− contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91phox expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91phox. NOX2/gp91phox therefore might be a potential pharmacological target to treat ACM.
Collapse
|
3
|
Park JH, Kim SJ, Hwang I, Bae KC, Bae JH, Song DK. Green Tea Extract Co-administered with a Polymer Effectively Prevents Alcoholic Liver Damage by Prolonged Inhibition of Alcohol Absorption in Mice. Alcohol Alcohol 2012; 48:59-67. [DOI: 10.1093/alcalc/ags118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
4
|
Cardiac insulin resistance and microRNA modulators. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:654904. [PMID: 21977024 PMCID: PMC3184440 DOI: 10.1155/2012/654904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/22/2011] [Indexed: 12/18/2022]
Abstract
Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS), and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS) and angiotensin II (Ang II) activate mammalian target for rapamycin (mTOR)/p70 S6 kinase (S6K1) signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2), it also renders cardioprotection via increased Ang II receptor 2 (AT2R) upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO) rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.
Collapse
|
5
|
Zhang Y, Ren J. ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 2011; 132:86-95. [PMID: 21664374 DOI: 10.1016/j.pharmthera.2011.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 01/12/2023]
Abstract
Alcoholic cardiomyopathy is manifested as cardiac hypertrophy, disrupted contractile function and myofibrillary architecture. An ample amount of clinical and experimental evidence has depicted a pivotal role for alcohol metabolism especially the main alcohol metabolic product acetaldehyde, in the pathogenesis of this myopathic state. Findings from our group and others have revealed that the mitochondrial isoform of aldehyde dehydrogenase (ALDH2), which metabolizes acetaldehyde, governs the detoxification of acetaldehyde formed following alcohol consumption and the ultimate elimination of alcohol from the body. The ALDH2 enzymatic cascade may evolve as a unique detoxification mechanism for environmental alcohols and aldehydes to alleviate the undesired cardiac anomalies in ischemia-reperfusion and alcoholism. Polymorphic variants of the ALDH2 gene encode enzymes with altered pharmacokinetic properties and a significantly higher prevalence of cardiovascular diseases associated with alcoholism. The pathophysiological effects of ALDH2 polymorphism may be mediated by accumulation of acetaldehyde and other reactive aldehydes. Inheritance of the inactive ALDH2*2 gene product is associated with a decreased risk of alcoholism but an increased risk of alcoholic complications. This association is influenced by gene-environment interactions such as those associated with religion and national origin. The purpose of this review is to recapitulate the pathogenesis of alcoholic cardiomyopathy with a special focus on ALDH2 enzymatic metabolism. It will be important to dissect the links between ALDH2 polymorphism and prevalence of alcoholic cardiomyopathy, in order to determine the mechanisms underlying such associations. The therapeutic value of ALDH2 as both target and tool in the management of alcoholic tissue damage will be discussed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | |
Collapse
|
6
|
Goh JM, Bensley JG, Kenna K, Sozo F, Bocking AD, Brien J, Walker D, Harding R, Black MJ. Alcohol exposure during late gestation adversely affects myocardial development with implications for postnatal cardiac function. Am J Physiol Heart Circ Physiol 2010; 300:H645-51. [PMID: 21076018 DOI: 10.1152/ajpheart.00689.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prenatal exposure to high levels of ethanol is associated with cardiac malformations, but the effects of lower levels of exposure on the heart are unclear. Our aim was to investigate the effects of daily exposure to ethanol during late gestation, when cardiomyocytes are undergoing maturation, on the developing myocardium. Pregnant ewes were infused with either ethanol (0.75 g/kg) or saline for 1 h each day from gestational days 95 to 133 (term ∼145 days); tissues were collected at 134 days. In sheep, cardiomyocytes mature during late gestation as in humans. Within the left ventricle (LV), cardiomyocyte number was determined using unbiased stereology and cardiomyocyte size and nuclearity determined using confocal microscopy. Collagen deposition was quantified using image analysis. Genes relating to cardiomyocyte proliferation and apoptosis were examined using quantitative real-time PCR. Fetal plasma ethanol concentration reached 0.11 g/dL after EtOH infusions. Ethanol exposure induced significant increases in relative heart weight, relative LV wall volume, and cardiomyocyte cross-sectional area. Ethanol exposure advanced LV maturation in that the proportion of binucleated cardiomyocytes increased by 12%, and the number of mononucleated cardiomyocytes was decreased by a similar amount. Apoptotic gene expression increased in the ethanol-exposed hearts, although there were no significant differences between groups in total cardiomyocyte number or interstitial collagen. Daily exposure to a moderate dose of ethanol in late gestation accelerates the maturation of cardiomyocytes and increases cardiomyocyte and LV tissue volume in the fetal heart. These effects on cardiomyocyte growth may program for long-term cardiac vulnerability.
Collapse
Affiliation(s)
- Joanna M Goh
- Department of Anatomy and Developmental Biology, Monash University, Clayton Campus, Bldg. 76, Victoria 3800 Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guo R, Ren J. Alcohol and acetaldehyde in public health: from marvel to menace. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1285-301. [PMID: 20617031 PMCID: PMC2872347 DOI: 10.3390/ijerph7041285] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/23/2010] [Accepted: 03/12/2010] [Indexed: 01/12/2023]
Abstract
Alcohol abuse is a serious medical and social problem. Although light to moderate alcohol consumption is beneficial to cardiovascular health, heavy drinking often results in organ damage and social problems. In addition, genetic susceptibility to the effect of alcohol on cancer and coronary heart disease differs across the population. A number of mechanisms including direct the toxicity of ethanol, its metabolites [e.g., acetaldehyde and fatty acid ethyl esters (FAEEs)] and oxidative stress may mediate alcoholic complications. Acetaldehyde, the primary metabolic product of ethanol, is an important candidate toxin in developing alcoholic diseases. Meanwhile, free radicals produced during ethanol metabolism and FAEEs are also important triggers for alcoholic damages.
Collapse
Affiliation(s)
- Rui Guo
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, College of Health Sciences, WY 82071, USA.
| | | |
Collapse
|
8
|
Szentmihályi K, Vinkler P, Fodor J, Balla J, Lakatos B. The role of zinc in the homeostasis of human organism. Orv Hetil 2009; 150:681-7. [DOI: 10.1556/oh.2009.28591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Az emberi szervezet sejtjei különböző kompartmentjeinek nyomelem-koncentrációi pontosan szabályozottak (homeosztázis). A fémelemek raktározásának vagy kiürülésének rendellenességei jól karakterizált betegségekhez vezetnek. Ez az összefoglaló a cink metabolizmusával, továbbá az ennek szabályozására szolgáló folyamatokkal foglalkozik, amelyek biztosítják, hogy a cinkionok intracelluláris és extracelluláris szintje azokon a fiziológiai határokon belül maradjon, amelyek között a biológiai funkciók normálisak. Patológiás állapotban a metabolizmus folyamatai is megváltoznak. A cinkionoknak a kompartmenteket elválasztó membránokon és a citoszólon való átjutását, a fémionok szekvesztrálását génregulációk irányítják. A cink hatására kialakuló sejt- és szövetkárosodási folyamatokat, valamint a nyomelemhiányok szimptómáit is részletesen elemezzük.
Collapse
Affiliation(s)
- Klára Szentmihályi
- 1 Magyar Tudományos Akadémia, Kémiai Kutatóközpont Anyag- és Környezetkémiai Intézet Budapest Pusztaszeri út 59–67. 1025
| | - Péter Vinkler
- 1 Magyar Tudományos Akadémia, Kémiai Kutatóközpont Anyag- és Környezetkémiai Intézet Budapest Pusztaszeri út 59–67. 1025
| | - Judit Fodor
- 1 Magyar Tudományos Akadémia, Kémiai Kutatóközpont Anyag- és Környezetkémiai Intézet Budapest Pusztaszeri út 59–67. 1025
| | - József Balla
- 2 Debreceni Egyetem, Orvos- és Egészségtudományi Centrum I. Belgyógyászati Klinika, Nefrológiai Tanszék Debrecen
| | - Béla Lakatos
- 1 Magyar Tudományos Akadémia, Kémiai Kutatóközpont Anyag- és Környezetkémiai Intézet Budapest Pusztaszeri út 59–67. 1025
| |
Collapse
|
9
|
Abstract
Compromised heart function is regularly seen in patients with chronic alcohol ingestion and is often manifested as cardiomegaly, reduced myocardial contractility (with concomitant reductions in ejection fraction and stroke volume), myocardial fibrosis, enhanced risk of stroke and hypertension, and disruptions in the myofibrillary structure. A number of mechanisms including oxidative damage, deposition of triglycerides, altered fatty acid extraction, decreased myofilament Ca(2+) sensitivity, and impaired protein synthesis have been proposed for the development of alcoholic cardiomyopathy. Nonetheless, the underlying mechanism(s) has not been delineated. Several alcohol metabolites have been identified as specific toxins of myocardial tissue, including ethanol, its first and major metabolic product--acetaldehyde--and fatty acid ethyl esters. Acetaldehyde directly impairs cardiac contractile function, disrupts cardiac excitation-contraction coupling and promotes oxidative damage and lipid peroxidation. Unfortunately, the most direct approach to studying this (direct administration of acetaldehyde) is impossible, since direct intake of acetaldehyde is highly toxic and unsuitable for chronic studies. In order to overcome this obstacle, transgenic mice have recently been produced to artificially alter ethanol/acetaldehyde metabolism, resulting in elevated acetaldehyde levels after ethanol ingestion. This review will summarize some of the postulated mechanisms for alcoholic cardiomyopathy, with special emphasis on animal models.
Collapse
Affiliation(s)
- Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | | |
Collapse
|
10
|
Swindell WR. Genes regulated by caloric restriction have unique roles within transcriptional networks. Mech Ageing Dev 2008; 129:580-92. [PMID: 18634819 DOI: 10.1016/j.mad.2008.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/09/2008] [Accepted: 06/15/2008] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) has received much interest as an intervention that delays age-related disease and increases lifespan. Whole-genome microarrays have been used to identify specific genes underlying these effects, and in mice, this has led to the identification of genes with expression responses to CR that are shared across multiple tissue types. Such CR-regulated genes represent strong candidates for future investigation, but have been understood only as a list, without regard to their broader role within transcriptional networks. In this study, co-expression and network properties of CR-regulated genes were investigated using data generated by more than 600 Affymetrix microarrays. This analysis identified groups of co-expressed genes and regulatory factors associated with the mammalian CR response, and uncovered surprising network properties of CR-regulated genes. Genes downregulated by CR were highly connected and located in dense network regions. In contrast, CR-upregulated genes were weakly connected and positioned in sparse network regions. Some network properties were mirrored by CR-regulated genes from invertebrate models, suggesting an evolutionary basis for the observed patterns. These findings contribute to a systems-level picture of how CR influences transcription within mammalian cells, and point towards a comprehensive understanding of CR in terms of its influence on biological networks.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
11
|
Maret W. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 2008; 43:363-9. [DOI: 10.1016/j.exger.2007.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
12
|
Rodent models of heart failure. J Pharmacol Toxicol Methods 2007; 56:1-10. [PMID: 17391988 DOI: 10.1016/j.vascn.2007.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
Heart failure, a complex disorder with heterogeneous aetiologies remains one of the most threatening diseases known. It is a clinical syndrome attributable to a multitude of factors that begins with the compensatory response known as hypertrophy, followed by a decompensated state that finally results in heart failure. Given the lack of a unified theory of heart failure, future research efforts are required to unify and synthesize our current understanding of the multiple mechanisms that control remodelling in heart under various stress conditions. During the past few decades, use of animal models has provided new insights into the complex pathogenesis of this syndrome. Rodents have contributed significantly in the understanding of the pathogenesis and progression of heart failure. With the advent of the transgenic era, rodent models have revolutionized preclinical research associated with heart failure. These models combined with physiological measurements of cardiac hemodynamics, are expected to yield more valuable information regarding the molecular mechanisms of heart failure and aid in the discovery of novel therapeutic targets. However, all animal models used have advantages and limitations, and the issues determining transfer from preclinical to clinical require critical evaluation. The present review focuses upon rodent models of heart failure.
Collapse
|