1
|
Fujishima K, Yamamoto S, Tsukagoshi K, Hashimoto M. A Microbead-based Single Base Extension Assay for the Detection of Known Single-base Changes in Genomic DNA. CHEM LETT 2015. [DOI: 10.1246/cl.150014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kohei Fujishima
- Department of Chemical Engineering and Materials Science, Doshisha University
| | - Shunsuke Yamamoto
- Department of Chemical Engineering and Materials Science, Doshisha University
| | - Kazuhiko Tsukagoshi
- Department of Chemical Engineering and Materials Science, Doshisha University
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Doshisha University
| |
Collapse
|
2
|
Kang C, Crockett RM, Spencer ND. Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces. Macromolecules 2013. [DOI: 10.1021/ma401951w] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chengjun Kang
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH 8093 Zurich, Switzerland
| | - Rowena M. Crockett
- Swiss Federal
Laboratories for Materials Science and Technology, Empa, Ueberlandstrasse 129, CH 8600 Duebendorf, Switzerland
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Peter JF, Otto AM. Magnetic particles as powerful purification tool for high sensitive mass spectrometric screening procedures. Proteomics 2010; 10:628-33. [PMID: 20099258 DOI: 10.1002/pmic.200900535] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effective isolation and purification of proteins from biological fluids is the most crucial step for a successful protein analysis when only minute amounts are available. While conventional purification methods such as dialysis, ultrafiltration or protein precipitation often lead to a marked loss of protein, SPE with small-sized particles is a powerful alternative. The implementation of particles with superparamagnetic cores facilitates the handling of those particles and allows the application of particles in the nanometer to low micrometer range. Due to the small diameters, magnetic particles are advantageous for increasing sensitivity when using subsequent MS analysis or gel electrophoresis. In the last years, different types of magnetic particles were developed for specific protein purification purposes followed by analysis or screening procedures using MS or SDS gel electrophoresis. In this review, the use of magnetic particles for different applications, such as, the extraction and analysis of DNA/RNA, peptides and proteins, is described.
Collapse
|
4
|
Oberacher H. Frontiers of mass spectrometry in nucleic acids analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:351-365. [PMID: 20530841 DOI: 10.1255/ejms.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids research is a highly competitive field of research. A number of well established methods are available. The current output of high throughput ("next generation") sequencing technologies is impressive, and still technologies are continuing to make progress regarding read lengths, bp per second, accuracy and costs. Although in the 1990s MS was considered as an analytical platform for sequencing, it was soon realized that MS will never be competitive. Thus, the focus shifted from de novo sequencing towards other areas of application where MS has proven to be a powerful analytical tool. Potential niches for the application of MS in nucleic acids research include genotyping of genetic markers (single nucleotide polymorphisms, short tandem repeats, and combinations thereof), quality control of synthetic oligonucleotides, metabolic profiling of therapeutics, characterization of modified nucleobases in DNA and RNA molecules, and the study of non covalent interactions among nucleic acids as well as interactions of nucleic acids with drugs and proteins. The diversity of possible applications for MS highlights its significance for nucleic acid research.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
5
|
Misra A, Kim S. Microbead device for isolating biotinylated oligonucleotides for use in mass spectrometric analysis. Anal Biochem 2008; 384:96-100. [PMID: 18823931 DOI: 10.1016/j.ab.2008.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
We describe a prototypical device for isolating biotinylated oligonucleotides for use in mass spectrometric analysis. It consists of monomeric avidin-coated microbeads trapped in a pipette tip and has been used for genotyping single nucleotide polymorphisms (SNPs) with the previously developed solid phase capture-single base extension (SPC-SBE) method. The device reduces processing time for genotyping by SPC-SBE and allows direct spotting of sample for rapid analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, it allows simultaneous processing of multiple samples and can be reused after regeneration of beads with no carryover effects. These results indicate that the microbead device is a low-cost tool that enhances sample cleanup prior to MS for SNP genotyping.
Collapse
Affiliation(s)
- Ashish Misra
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
6
|
On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 2008; 391:135-49. [DOI: 10.1007/s00216-008-1929-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
7
|
Misra A, Hong JY, Kim S. Multiplex genotyping of cytochrome p450 single-nucleotide polymorphisms by use of MALDI-TOF mass spectrometry. Clin Chem 2007; 53:933-9. [PMID: 17384008 DOI: 10.1373/clinchem.2006.080739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Polymorphisms in cytochrome P450 (CYP450) genes contribute to interindividual differences in the metabolism of xenobiotic chemicals, including the vast majority of drugs, and may lead to toxicity and adverse drug reactions. Studies on these polymorphisms in research and diagnostic settings typically involve large-scale genotyping and hence require high-throughput assays. METHODS We used the previously developed solid-phase capture-single-base extension (SPC-SBE) approach for concurrent analysis of 40 single-nucleotide polymorphisms (SNPs) of CYP2C9 and 50 SNPs of CYP2A13, both genes belonging to the CYP450 family. Desired SNP-containing regions for each gene were amplified in a single-step multiplex PCR. We designed a library of primers to anneal immediately upstream of the selected SNPs and extended it with biotinylated terminators using PCR products as templates. Biotinylated extension products were isolated by affinity purification and analyzed with MALDI-TOF mass spectrometry to determine SNP genotypes. RESULTS We analyzed 11 samples for CYP2C9 and 14 samples for CYP2A13 with unambiguous detection of SNPs in all samples. Many samples showed a high occurrence of heterozygotes for both genes, with as many as 10 of 50 SNPs appearing as heterozygotes in 1 sample genotyped for CYP2A13. CONCLUSIONS The SPC-SBE method provides an efficient means for genotyping SNPs from the CYP450 family. This approach is suitable for automation and can be extended to other genotyping applications.
Collapse
Affiliation(s)
- Ashish Misra
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
8
|
Abstract
1. Pharmacogenetics refers to the study of genetically controlled variations in drug response. Functional variants caused by single nucleotide polymorphisms (SNPs) in genes encoding drug-metabolising enzymes, transporters, ion channels and drug receptors have been known to be associated with interindividual and interethnic variation in drug response. Genetic variations in these genes play a role in influencing the efficacy and toxicity of medications. 2. Rapid, precise and cost-effective high-throughput technological platforms are essential for performing large-scale mutational analysis of genetic markers involved in the aetiology of variable responses to drug therapy. 3. The application of a pharmacogenetics approach to therapeutics in general clinical practice is still far from being achieved today owing to various constraints, such as limited accessibility of technology, inadequate knowledge, ambiguity of the role of variants and ethical concerns. 4. Drug actions are determined by the interplay of several genes encoding different proteins involved in various biochemical pathways. With rapidly emerging SNP discovery technological platforms and widespread knowledge on the role of SNPs in disease susceptibility and variability in drug response, the pharmacogenetics approach to therapeutics is anticipated to take off in the not-too-distant future. This will present profound clinical, economic and social implications for health care.
Collapse
Affiliation(s)
- Seok Hwee Koo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
9
|
Gupta M, Yates CR, Meibohm B. SYBR Green-based real-time PCR allelic discrimination assay for beta2-adrenergic receptor polymorphisms. Anal Biochem 2006; 344:292-4. [PMID: 16026755 DOI: 10.1016/j.ab.2005.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Manish Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
10
|
|
11
|
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 2005; 38:335-50. [PMID: 15766735 DOI: 10.1016/j.clinbiochem.2004.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 11/22/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry has become one of the most powerful and widely applied technologies for SNP scoring and determination of allele frequencies in the post-genome sequencing era. Although different strategies for allele discrimination combined with MALDI were devised, in practice only primer extension methods are nowadays routinely used. This combination enables the rapid, quantitative, and direct detection of several genetic markers simultaneously in a broad variety of biological samples. In the field of molecular diagnostics, MALDI has been applied to the discovery of genetic markers, that are associated with a phenotype like a disease susceptibility or drug response, as well as an alternative means for diagnostic testing of a range of diseases for which the responsible mutations are already known. It is one of the first techniques with which whole genome scans based on single nucleotide polymorphisms were carried out. It is equally well suited for pathogen identification and the detection of emerging mutant strains as well as for the characterization of the genetic identity and quantitative trait loci mapping in farm animals. MALDI can also be used as a detection platform for a range of novel applications that are more demanding than standard SNP genotyping such as mutation/polymorphism discovery, molecular haplotyping, analysis of DNA methylation, and expression profiling. This review gives an introduction to the application of mass spectrometry for DNA analysis, and provides an overview of most studies using SNPs as genetic markers and MALDI mass spectrometric detection that are related to clinical applications and molecular diagnostics. Further, it aims to show specialized applications that might lead to diagnostic applications in the future. It does not speculate on whether this methodology will ever reach the diagnostic market.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 Rue Gaston Crémieux, CP 5721, 91057 Evry Cedex, France
| | | |
Collapse
|
12
|
Sobrino B, Brión M, Carracedo A. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 2005; 154:181-94. [PMID: 16182964 DOI: 10.1016/j.forsciint.2004.10.020] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 10/10/2004] [Accepted: 10/15/2004] [Indexed: 11/22/2022]
Abstract
There is an increasing interest in single nucleotide polymorphism (SNP) typing in the forensic field, not only for the usefulness of SNPs for defining Y chromosome or mtDNA haplogroups or for analyzing the geographical origin of samples, but also for the potential applications of autosomal SNPs. The interest of forensic researchers in autosomal SNPs has been attracted due to the potential advantages in paternity testing because of the low mutation rates and specially in the analysis of degraded samples by use of short amplicons. New SNP genotyping methods, chemistries and platforms are continuously being developed and it is often difficult to be keeping up to date and to decide on the best technology options available. This review offers to the reader a state of the art of SNP genotyping technologies with the advantages and disadvantages of the different chemistries and platforms for different forensic requirements.
Collapse
Affiliation(s)
- Beatriz Sobrino
- Institute of Legal Medicine, University of Santiago de Compostela, San Francisco s/n, Spain.
| | | | | |
Collapse
|
13
|
Bai X, Kim S, Li Z, Turro NJ, Ju J. Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry. Nucleic Acids Res 2004; 32:535-41. [PMID: 14744978 PMCID: PMC373325 DOI: 10.1093/nar/gkh198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/09/2003] [Accepted: 12/09/2003] [Indexed: 01/24/2023] Open
Abstract
We report here the design, synthesis and evaluation of a novel photocleavable (PC) biotinylated nucleotide analog, dUTP-PC-Biotin, for DNA polymerase extension reaction to isolate DNA products for mass spectrometry (MS) analysis. This nucleotide analog has a biotin moiety attached to the 5-position of 2'-deoxyribouridine 5'-triphosphate via a photocleavable 2-nitrobenzyl linker. We have demonstrated that dUTP-PC-Biotin can be faithfully incorporated by the DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA polymerase extension reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. Therefore, the DNA extension fragments generated by using the dUTP-PC-Biotin can be efficiently isolated by a streptavidin-coated surface and recovered by near-UV light irradiation at room temperature in mild condition for further analysis without using any chemicals or heat. Single and multiple primer extension reactions were performed using the dUTP-PC-Biotin to generate DNA products for MALDI-TOF MS analysis. Such nucleotide analogs that carry a biotin and a photocleavable linker will allow the isolation and purification of DNA products under mild conditions for MS-based genetic analysis by DNA sequencing or multiplex single nucleotide polymorphism (SNP) detection. Furthermore, these nucleotide analogs should also be useful in isolating DNA-protein complexes under non-denaturing conditions.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
14
|
Kim S, Ruparel HD, Gilliam TC, Ju J. Digital genotyping using molecular affinity and mass spectrometry. Nat Rev Genet 2004; 4:1001-8. [PMID: 14631360 DOI: 10.1038/nrg1230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The goal of DNA sequencing and genotyping is to efficiently generate accurate high-throughput digital genetic information that unambiguously identifies sources of genetic variation and clearly distinguishes heterozygous from homozygous variants. Recent advances in mass-spectrometry-based DNA sequencing and genotyping bode well for meeting these criteria. Pilot studies show that these recently developed approaches allow unambiguous multiplex detection of heterozygous variants and the identification of deletion and insertion variants.
Collapse
Affiliation(s)
- Sobin Kim
- Columbia Genome Center and the Department of Chemical Engineering, Columbia University College of Physicians and Surgeons, New York 10032, USA
| | | | | | | |
Collapse
|
15
|
|