1
|
Darula Z, Medzihradszky KF. Carbamidomethylation Side Reactions May Lead to Glycan Misassignments in Glycopeptide Analysis. Anal Chem 2015; 87:6297-302. [PMID: 25978763 DOI: 10.1021/acs.analchem.5b01121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iodoacetamide is perhaps the most widely used reagent for the alkylation of free sulfhydryls in proteomic experiments. Here, we report that both incomplete derivatization of Cys side chains and overalkylation of the peptides may lead to the misassignment of glycoforms when LC-MS/MS with electron-transfer dissociation (ETD) alone is used for the structural characterization of glycopeptides. Accurate mass measurements do not help, because the elemental compositions of the misidentified and correct modifications are identical. Incorporation of "higher-energy C-trap dissociation" (HCD), i.e., beam-type collision-induced dissociation data into the database searches with ETD data may prove decisive in most cases. However, the carbamidomethylation of Met residues leads to sulfonium ether formation, and the resulting fixed positive charge triggers a characteristic fragmentation, that eliminates the normal Y1 fragment from the HCD spectra of N-linked glycopeptides, producing an abundant Y1-48 Da ion instead (the nominal mass difference is given relative to the unmodified amino acid sequence), that easily can be mistaken for the side chain loss from Met sulfoxide. In such cases, good quality ETD data may indicate the discrepancy, and will also display abundant fragments due to CH3-S-CH2CONH2 elimination from the charge-reduced precursor ions. Our observations also draw attention to the underreported interference of different unanticipated covalent modifications.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- †Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin F Medzihradszky
- †Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary.,‡Department of Pharmaceutical Chemistry, University of California San Francisco, California 94158-2517, United States
| |
Collapse
|
2
|
Nathani R, Moody P, Smith MEB, Fitzmaurice RJ, Caddick S. Bioconjugation of green fluorescent protein via an unexpectedly stable cyclic sulfonium intermediate. Chembiochem 2012; 13:1283-5. [PMID: 22639110 PMCID: PMC3487180 DOI: 10.1002/cbic.201200231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Indexed: 11/12/2022]
Abstract
Smooth converter: Bioconjugation of superfolder GFP involving the formation of an unusually stable, and unprecedented, cyclic sulfonium species is described. This sulfonium can undergo smooth reaction with a range of nucleophiles to give sulfur-, selenium- and azide-modified GFP derivatives in high conversions.
Collapse
Affiliation(s)
- Ramiz Nathani
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| | - Paul Moody
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| | - Mark E B Smith
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| | | | - Stephen Caddick
- Department of Chemistry, University College LondonLondon, WC1H 0AJ (UK)
| |
Collapse
|
3
|
Held JM, Gibson BW. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Mol Cell Proteomics 2011; 11:R111.013037. [PMID: 22159599 DOI: 10.1074/mcp.r111.013037] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease.
Collapse
Affiliation(s)
- Jason M Held
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | |
Collapse
|
4
|
Held JM, Danielson SR, Behring JB, Atsriku C, Britton DJ, Puckett RL, Schilling B, Campisi J, Benz CC, Gibson BW. Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol Cell Proteomics 2010; 9:1400-10. [PMID: 20233844 DOI: 10.1074/mcp.m900643-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are both physiological intermediates in cellular signaling and mediators of oxidative stress. The cysteine-specific redox-sensitivity of proteins can shed light on how ROS are regulated and function, but low sensitivity has limited quantification of the redox state of many fundamental cellular regulators in a cellular context. Here we describe a highly sensitive and reproducible oxidation analysis approach (OxMRM) that combines protein purification, differential alkylation with stable isotopes, and multiple reaction monitoring mass spectrometry that can be applied in a targeted manner to virtually any cysteine or protein. Using this approach, we quantified the site-specific cysteine oxidation status of endogenous p53 for the first time and found that Cys182 at the dimerization interface of the DNA binding domain is particularly susceptible to diamide oxidation intracellularly. OxMRM enables analysis of sulfinic and sulfonic acid oxidation levels, which we validate by assessing the oxidation of the catalytic Cys215 of protein tyrosine phosphatase-1B under numerous oxidant conditions. OxMRM also complements unbiased redox proteomics discovery studies as a verification tool through its high sensitivity, accuracy, precision, and throughput.
Collapse
Affiliation(s)
- Jason M Held
- double daggerBuck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee SJ, Michel SLJ. Cysteine Oxidation Enhanced by Iron in Tristetraprolin, A Zinc Finger Peptide. Inorg Chem 2010; 49:1211-9. [DOI: 10.1021/ic9024298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Seung Jae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180
| |
Collapse
|
6
|
Atsriku C, Britton DJ, Held JM, Schilling B, Scott GK, Gibson BW, Benz CC, Baldwin MA. Systematic mapping of posttranslational modifications in human estrogen receptor-alpha with emphasis on novel phosphorylation sites. Mol Cell Proteomics 2008; 8:467-80. [PMID: 18984578 DOI: 10.1074/mcp.m800282-mcp200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A systematic study of posttranslational modifications of the estrogen receptor isolated from the MCF-7 human breast cancer cell line is reported. Proteolysis with multiple enzymes, mass spectrometry, and tandem mass spectrometry achieved very high sequence coverage for the full-length 66-kDa endogenous protein from estradiol-treated cell cultures. Nine phosphorylated serine residues were identified, three of which were previously unreported and none of which were previously observed by mass spectrometry by any other laboratory. Two additional modified serine residues were identified in recombinant protein, one previously reported but not observed here in endogenous protein and the other previously unknown. Although major emphasis was placed on identifying new phosphorylation sites, N-terminal loss of methionine accompanied by amino acetylation and a lysine side chain acetylation (or possibly trimethylation) were also detected. The use of both HPLC-ESI and MALDI interfaced to different mass analyzers gave higher sequence coverage and identified more sites than could be achieved by either method alone. The estrogen receptor is critical in the development and progression of breast cancer. One previously unreported phosphorylation site identified here was shown to be strongly dependent on estradiol, confirming its potential significance to breast cancer. Greater knowledge of this array of posttranslational modifications of estrogen receptor, particularly phosphorylation, will increase our understanding of the processes that lead to estradiol-induced activation of this protein and may aid the development of therapeutic strategies for management of hormone-dependent breast cancer.
Collapse
|
7
|
Benz CC, Atsriku C, Yau C, Britton D, Schilling B, Gibson BW, Baldwin MA, Scott GK. Novel Pathways Associated with Quinone-Induced Stress in Breast Cancer Cells. Drug Metab Rev 2008; 38:601-13. [PMID: 17145690 DOI: 10.1080/03602530600959391] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hormone-dependent breast cancers that overexpress the ligand-binding nuclear transcription factor, estrogen receptor (ER), represent the most common form of breast epithelial malignancy. Exposure of breast epithelial cells to a redox-cycling and arylating quinone induces mitogen-activated protein kinase phosphorylation of the cytoskeletal filament protein, cytokeratin-8, along with thiol arylation of H3 nuclear histones. Exogenous or endogenous quinones can also induce ligand-independent nuclear translocation and phosphorylation of ER; with excess exposure, these quinones can arylate ER zinc fingers, impairing ER DNA-binding and altering ER-inducible gene expression. Immunoaffinity enrichment for low abundance proteins such as ER, coupled with modern mass spectrometry techniques, promises to improve understanding of the protein-modifications produced by endogenous and exogenous quinone exposure and their role in the development or progression of epithelial malignancies such as breast cancer.
Collapse
Affiliation(s)
- Christopher C Benz
- Cancer and Developmental Therapeutics Program, Buck Institute for Age Research, Novato, CA 94945, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Smirnova J, Zhukova L, Witkiewicz-Kucharczyk A, Kopera E, Oledzki J, Wysłouch-Cieszyńska A, Palumaa P, Hartwig A, Bal W. Quantitative electrospray ionization mass spectrometry of zinc finger oxidation: The reaction of XPA zinc finger with H2O2. Anal Biochem 2007; 369:226-31. [PMID: 17577569 DOI: 10.1016/j.ab.2007.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Oxidation plays an important role in the functioning of zinc fingers (ZFs). Electrospray ionization mass spectrometry (ESI-MS) is a very useful technique to study products of ZF oxidation, but its application has been limited largely to qualitative analysis of reaction products. On the other hand, ESI-MS has been applied successfully on several occasions to determine binding constants in metalloproteins. We used a synthetic 37-residue peptide acetyl-DYVICEECGKEFMDSYLMNHFDLPTCDNCRDADDKHK-amide (XPAzf), which corresponds to the Cys4 ZF sequence of human nucleotide excision repair protein XPA, to find out whether ESI-MS might be used quantitatively to study ZF reaction kinetics. For this purpose, we studied oxidation of the Zn(II) complex of XPAzf (ZnXPAzf) by H(2)O(2) using three techniques in parallel: high-performance liquid chromatography (HPLC) of covalent reaction products, 4-(2-pyridylazo)-resorcinol monosodium salt (PAR)-based spectrophotometric zinc release assay, and ESI-MS. Single and double intrapeptide disulfides were detected by ESI-MS to be the sole reaction products. All three techniques yielded independently the same reaction rate, thereby demonstrating that ESI-MS may indeed be used in quantitative kinetic studies of ZF reactions. The comparison of experimental information demonstrated that the formation of the Cys5-Cys8 single disulfide was responsible for zinc release.
Collapse
Affiliation(s)
- Julia Smirnova
- Institute of Gene Technology, Tallinn Technical University, 12618 Tallinn, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Atsriku C, Benz CC, Scott GK, Gibson BW, Baldwin MA. Quantification of cysteine oxidation in human estrogen receptor by mass spectrometry. Anal Chem 2007; 79:3083-90. [PMID: 17373775 PMCID: PMC2536661 DOI: 10.1021/ac062154o] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Redox-dependent modifications of sulfhydryl groups within the two Cys4 zinc fingers of the estrogen receptor DNA-binding domain (ER-DBD) result in structural damage and loss of ER DNA-binding function, which parallels the situation observed in many ER-positive breast cancers. Quantitation of the redox status of cysteinyl thiols within ER-DBD employed cysteine-specific oxidants to induce varying degrees of oxidation in recombinant ER, followed by differential alkylation with the stable isotopic labeling reagents [12C2]-iodoacetic acid and [13C2]-bromoacetic acid. Subsequent proteolysis with LysC/Asp-N generated diagnostic peptides of which the C-terminal peptide of the second zinc finger is most strongly detected by mass spectrometry (MS) and serves as a suitable marker of ER-DBD redox status. Data were collected from two different MALDI-MS instruments: a time-of-flight and a linear ion trap (vMALDI-LIT). An analogous but larger synthetic peptide treated with three isotopic variants of the alkylating reagent modeled isotopic overlaps that might complicate the relative quantitation of cysteine oxidation. Despite the isotopic overlaps, excellent relative quantitation was achieved from MS data obtained from both instruments. This was also true of tandem MS/MS data from the vMALDI-LIT, which should facilitate selected reaction monitoring. Relative quantitation by MS also closely matched data from immunochemical methods.
Collapse
|
10
|
Atsriku C, Scott GK, Benz CC, Baldwin MA. Reactivity of zinc finger cysteines: chemical modifications within labile zinc fingers in estrogen receptor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:2017-26. [PMID: 16246571 DOI: 10.1016/j.jasms.2005.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/04/2005] [Accepted: 08/16/2005] [Indexed: 05/05/2023]
Abstract
Estrogen receptor (ER, alpha isoform) is a 67 kDa zinc finger transcription factor that plays a fundamental role in both normal reproductive gland development and breast carcinogenesis, and also represents a critical molecular target for breast cancer therapy. We are investigating the structural consequences of chemical exposures thought to modify essential zinc finger cysteine residues in human ER. The current study employs mass spectrometry to probe ER zinc finger structural changes induced by a redox-reactive vitamin K3 analog, menadione; a commonly used cysteine alkylator, iodoacetic acid; and a thiol alkylating fluorophore, monobromobimane. Although they are slower to react, the sterically bulkier reagents, monobromobimane and menadione, effectively alkylate the most susceptible ER zinc finger cysteine sulfhydryl groups. Menadione arylation results first in Michael addition of the hydroquinone followed by rapid oxidation to the corresponding quinone, evidenced by a 2 Da mass loss per cysteine residue. Mass spectrometric analysis performed under MALDI conditions reveals both hydroquinone and quinone forms of arylated menadione, whereas only the quinone product is detectable under ESI conditions. Tandem mass spectrometry of a synthetic peptide encompassing the C-terminal half of the structurally more labile second zinc finger of ER (ZnF2B) demonstrates that the two nucleophilic thiols in ZnF2B (Cys-237, Cys-240) are not chemically equivalent in their reactivity to bromobimane or menadione, consistent with their unequal positioning near basic amino acids that affect thiol pKa, thereby rendering Cys-240 more reactive than Cys-237. These findings demonstrate important differential susceptibility of ER zinc finger cysteine residues to thiol reactions.
Collapse
|
11
|
Schilling B, Bharath M M S, Row RH, Murray J, Cusack MP, Capaldi RA, Freed CR, Prasad KN, Andersen JK, Gibson BW. Rapid purification and mass spectrometric characterization of mitochondrial NADH dehydrogenase (Complex I) from rodent brain and a dopaminergic neuronal cell line. Mol Cell Proteomics 2004; 4:84-96. [PMID: 15591592 DOI: 10.1074/mcp.m400143-mcp200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction signify important biochemical events associated with the loss of dopaminergic neurons in Parkinson's disease (PD). Studies using in vitro and in vivo PD models or tissues from diseased patients have demonstrated a selective inhibition of mitochondrial NADH dehydrogenase (Complex I of the OXPHOS electron transport chain) that affects normal mitochondrial physiology leading to neuronal death. In an earlier study, we demonstrated that oxidative stress due to glutathione depletion in dopaminergic cells, a hallmark of PD, leads to Complex I inhibition via cysteine thiol oxidation (Jha et al. (2000) J. Biol. Chem. 275, 26096-26101). Complex I is a approximately 980-kDa multimeric enzyme spanning the inner mitochondrial membrane comprising at least 45 protein subunits. As a prerequisite to investigating modifications to Complex I using a rodent disease model for PD, we developed two independent rapid and mild isolation procedures based on sucrose gradient fractionation and immunoprecipitation to isolate Complex I from mouse brain and a cultured rat mesencephalic dopaminergic neuronal cell line. Both protocols are capable of purifying Complex I from small amounts of rodent tissue and cell cultures. Blue Native gel electrophoresis, one-dimensional and two-dimensional SDS-PAGE were employed to assess the purity and composition of isolated Complex I followed by extensive mass spectrometric characterization. Altogether, 41 of 45 rodent Complex I subunits achieved MS/MS sequence coverage. To our knowledge, this study provides the first detailed mass spectrometric analysis of neuronal Complex I proteins and provides a means to investigate the role of cysteine oxidation and other posttranslational modifications in pathologies associated with mitochondrial dysfunction.
Collapse
|