1
|
High prevalence of mutations in perilipin 1 in patients with precocious acute coronary syndrome. Atherosclerosis 2019; 293:86-91. [PMID: 31877397 DOI: 10.1016/j.atherosclerosis.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Genetic partial lipodystrophies are rare heterogeneous disorders characterized by abnormalities of fat distribution and associated metabolic complications including a predisposition for atherosclerotic cardiovascular disease. We hypothesized that the milder forms of these diseases might be underdiagnosed and might result in early acute coronary syndrome (ACS) as the first sign of the pathology. METHODS We performed targeted sequencing on a panel of 8 genes involved in genetic lipodystrophy for 62 patients with premature ACS, and selected heterozygous missense variations with low frequency. To confirm those results, we analyzed a second independent group of 60 additional patients through Sanger sequencing, and compared to a control group of 120 healthy patients. RESULTS In the first cohort, only PLIN1 exhibited variants in more than 1 patient. In PLIN1, 3 different variants were found in 6 patients. We then analyzed PLIN1 sequence in the second cohort with premature ACS and found 2 other patients. Altogether, 8 patients were carriers of 4 different mutations in PLIN1. The variant frequencies in the total cohort of 122 patients were compared to frequencies observed in a local control cohort and in 2 different public databases showing a significant difference between patient vs control group frequencies for two mutations out of 4 (c.245C > T p = 10-4; c.839G > A p = 0.014). DISCUSSION This is the first study that identifies a high frequency of potential pathogenic mutations in PLIN1 related to early onset ACS. These findings could contribute to the prevention and care of precocious ACS in families carrying those mutations.
Collapse
|
2
|
Liu L, Liang C, Wang X, Ding X, Lu Y, Dong J, Han M, Yang H, Gao M, Liao J. Surgical fat removal exacerbates metabolic disorders but not atherogenesis in LDLR -/- mice fed on high-fat diet. Sci Rep 2019; 9:17848. [PMID: 31780791 PMCID: PMC6883051 DOI: 10.1038/s41598-019-54392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023] Open
Abstract
Lipodystrophy is a severe adipose dysfunction that can be classified as congenital or acquired lipodystrophy, in term of the etiology. Previous knowledge about the metabolic disorders and cardiovascular consequences were mostly obtained from lipodystrophic mice with genetic defects. To completely rule out the genetic influence, we established a mouse model of acquired generalized lipodystrophy by surgical removal of multiple fat depots, including subcutaneous fat in the inguinal, visceral fat in the epididymis and brown fat in the scapula, in atherosclerosis-prone LDLR-/- mice which were fed with a high-fat diet (HFD). It was observed that fat removal increased diet-induced hyperlipidemia, especially hypercholesteremia, as early as 2 weeks after HFD and till the end of HFD feeding. After 12 weeks on the HFD, the residual fats of fat-removed mice were found expanded. Although fat removal aggravated diet-induced lipid deposition in the liver and systemic insulin resistance, there was no significant difference in atherogenesis in fat-removed mice compared with sham-operated control mice. Acquired generalized lipodystrophy by surgical fat removal promoted metabolic disorders but not atherogenesis in LDLR-/- mice fed on HFD.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Chenxi Liang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiayu Ding
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yingjing Lu
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| |
Collapse
|