1
|
Ravara B, Giuriati W, Zampieri S, Kern H, Pond AL. Translational mobility medicine and ugo carraro: a life of significant scientific contributions reviewed in celebration. Neurol Res 2024; 46:139-156. [PMID: 38043115 DOI: 10.1080/01616412.2023.2258041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/04/2023] [Indexed: 12/05/2023]
Abstract
Prof. Ugo Carraro reached 80 years of age on 23 February 2023, and we wish to celebrate him and his work by reviewing his lifetime of scientific achievements in Translational Myology. Currently, he is a Senior Scholar with the University of Padova, Italy, where, as a tenured faculty member, he founded the Interdepartmental Research Center of Myology. Prof. Carraro, a pioneer in skeletal muscle research, is a world-class expert in structural and molecular investigations of skeletal muscle biology, physiology, pathology, and care. An authority in bidimensional gel electrophoresis for myosin light chains, he was the first to separate mammalian muscle myosin heavy chain isoforms by SDS-gel electrophoresis. He has demonstrated that long-term denervated muscle can survive denervation by myofiber regeneration, and shown that an athletic lifestyle has beneficial impacts on muscle reinnervation. He has utilized his expertise in translational myology to develop and validate rehabilitative treatments for denervated and ageing skeletal muscle. He has authored more than 160 PubMed listed papers and numerous scholarly books, including his recent autobiography. Prof. Carraro founded and serves as Editor-in-Chief of the European Journal of Translational Myology and Mobility Medicine. He has organized more than 40 Padua Muscle Days Meetings and continues this, encouraging students and young scientists to participate. As he dreams endlessly, he is currently validating non-invasive analyses on saliva, a promising approach that will allow increased frequency sampling to analyze systemic factors during the transient effects of training and rehabilitation by his proposed Full-Body in- Bed Gym for bed-ridden elderly.
Collapse
Affiliation(s)
- Barbara Ravara
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Walter Giuriati
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology Sciences, Padua University Hospital, Padua, Italy
| | - Helmut Kern
- Physiko- und Rheumatherapie, Ludwig Boltzmann Institute for Rehabilitation Research, Sankt Pölten, Austria
| | - Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Carraro U. Gerta Vrbová, a guide and a friend for a generation of neuro-myologists - Her scientific legacies and relations with colleagues. Eur J Transl Myol 2021; 31. [PMID: 33709645 PMCID: PMC8056157 DOI: 10.4081/ejtm.2021.9670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Gerta Sidonová - Vrbová, (Trnava, Slovakia, November 28, 1926 - London, UK, October 2, 2020) has been a key neuroscientist, who for almost half a century has contributed important findings and hypotheses on the relationships between motoneurons and skeletal muscle fibers, in particular on the differentiation and extent of plasticity of the peculiar characteristics of the different types of fibers present in mammalian muscles. This issue, Ejtm 31 (1), 2021, opens with the personal obituary authored by Dirk Pette, who remember his lifelong collaboration with Gerta, describing the many molecular and metabolic events that occur by changing the pattern of activation of adult muscle fibers through neuromuscular low frequency electrical stimulation. To honor the many scientific legacies of Gerta Vrbová and her impact on a generation of researchers studying myology and managements of neuromuscular disorders I add here additional examples of Gerta's scientific heritage and of her relations with colleagues.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| |
Collapse
|
3
|
Carraro U. Gerta Vrbová, a guide and a friend for a generation of neuro-myologists – Her scientific legacies and relations with colleagues. Eur J Transl Myol 2021. [DOI: 10.4081/ejtm.2020.9670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gerta Sidonová - Vrbová, (Trnava, Slovakia, November 28, 1926 - London, UK, October 2, 2020) has been a key neuroscientist, who for almost half a century has contributed important findings and hypotheses on the relationships between motoneurons and skeletal muscle fibers, in particular on the differentiation and extent of plasticity of the peculiar characteristics of the different types of fibers present in mammalian muscles. This issue, Ejtm 31 (1), 2021, opens with the personal obituary authored by Dirk Pette, who remember his lifelong collaboration with Gerta, describing the many molecular and metabolic events that occur by changing the pattern of activation of adult muscle fibers through neuromuscular low frequency electrical stimulation. To honor the many scientific legacies of Gerta Vrbová and her impact on a generation of researchers studying myology and managements of neuromuscular disorders I add here additional examples of Gerta’s scientific heritage and of her relations with colleagues.
Collapse
|
4
|
Taylor MJ, Fornusek C, Ruys AJ. The duty cycle in Functional Electrical Stimulation research. Part II: Duty cycle multiplicity and domain reporting. Eur J Transl Myol 2018; 28:7733. [PMID: 30662696 PMCID: PMC6317134 DOI: 10.4081/ejtm.2018.7733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
In part I of this review, we introduced the duty cycle as a fundamental parameter in controlling the effect of electrical stimulation pulse trains on muscle structural and functional properties with special emphasis on fatigue. Following on from a survey of the literature, we discuss here the relative ability of intermittent and continuous stimulation to fatigue muscle. In addition, pertinent literature is explored on a more deeper level, highlighting contentions regarding the duty cycle across studies. In response to literature inconsistencies, we propose frameworks upon which the duty cycle parameter may be specified. We present the idea of domain reporting for the duty cycle, and illustrate with practical examples. In addition we dig further into the literature and present a set of notations that have been used by different researchers to report the duty cycle. We also propose the idea of the duty cycle multiple, which together with domain reporting, will help researchers understand more precisely duty cycles of electrical stimulation. As a case study, we also show how the duty cycle has been looked at by researchers in the context of pressure sore attenuation in patients. Together with part I, it is hoped that the frameworks suggested provide a complete picture of how duty cycle has been discussed across the literature, and gives researchers a more trans-theoretical basis upon which they may report the duty cycle in their studies. This may also lead to a more precise specification of electrical stimulation protocols used in patients.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, Australia
| | - Ché Fornusek
- Faculty of Medicine and Health, University of Sydney, Lidcombe, Australia
| | - Andrew J. Ruys
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
| |
Collapse
|
5
|
Jarvis JC. The Relationship Between Activity Pattern and Muscle Adaptation in Skeletal Muscle. Artif Organs 2015; 39:863-7. [DOI: 10.1111/aor.12622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jonathan C. Jarvis
- School of Sport and Exercise Science; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
6
|
Trainini JC, Chachques JC, Herreros J, Pulitani I, García I, Nistal JF, Cabo J. La contención ventricular: ¿es una opción válida de la cardiomioplastia? Resultados. CIRUGIA CARDIOVASCULAR 2011. [DOI: 10.1016/s1134-0096(11)70055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Guldner NW, Klapproth P, Margaritoff PRJ, Noel R, Sievers HH, Grossherr M. Impact of valves in a biomechanical heart model assisting failing hearts. Asian Cardiovasc Thorac Ann 2009; 17:592-7. [PMID: 20026534 DOI: 10.1177/0218492309349066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Experimental valveless muscular blood pumps (biomechanical hearts) in goats can pump more than 1 L.min(-1), but due to a high pendulum volume, no significant flow contribution to the circulation is gained. Thus valved and valveless biomechanical hearts were compared for efficacy. Heart failure was induced in 5 adult Bore goats by repeated intracoronary embolization. A valved and balloon-equipped pumping chamber was integrated into the descending aorta, simulating standard biomechanical circulatory support. The valveless biomechanical heart supported a failing heart with a baseline cardiac output of 2,670 +/- 710 mL.min(-1) by contributing additional flow of 113 +/- 37 mL.min(-1). The biomechanical heart model incorporating an outlet valve offered an additional 304 +/- 126 mL.min(-1), and the use of 2 valves significantly enhanced pulmonary blood flow by 1,235 +/- 526 mL.min(-1). The use of 2 valves in biomechanical hearts seems to be essential to achieve adequate circulatory support. Double-valved biomechanical hearts driven by an appropriate skeletal muscle ventricle may contribute to the therapy of heart failure.
Collapse
Affiliation(s)
- Norbert W Guldner
- Clinic of Cardiac Surgery University of Schleswig-Holstein Luebeck, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Sutherland H, Salmons S, Ramnarine IR, Capoccia M, Walsh AA, Jarvis JC. Adaptive conditioning of skeletal muscle in a large animal model (Sus domesticus). J Anat 2007; 209:165-77. [PMID: 16879597 PMCID: PMC2100312 DOI: 10.1111/j.1469-7580.2006.00598.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recognition of the adaptive capacity of mammalian skeletal muscle has opened the way to a number of clinical applications. For most of these, the fast, fatigue-susceptible fibres need to be transformed stably to fast, fatigue-resistant fibres that express the 2A myosin heavy chain isoform. The thresholds for activity-induced change are size-dependent, so although the requisite patterns of electrical stimulation are known for the rabbit, in humans these same patterns would produce type 1 fibre characteristics, with an undesirable loss of contractile speed and power. We have used histochemistry, immunohistochemistry and electrophoretic separations to evaluate a possible conditioning regime in a large animal model. Stimulation of the porcine latissimus dorsi muscle with a phasic 30-Hz pattern for up to 41 days converted all type 2X and 2A/2X fibres to 2A with only a small increase in the type 1 population, from 17% to 22%. Stimulation for longer periods increased the proportion of type 1 fibres to 52%. Based on this model, stimulation regimes designed to achieve a stable 2A phenotype in humans should deliver fewer stimulating impulses, possibly by a factor of 2, than the pattern assessed here. Any such pattern needs to be tested for at least 8 weeks.
Collapse
Affiliation(s)
- Hazel Sutherland
- Department of Human Anatomy and Cell Biology, University of Liverpool, UK
| | | | | | | | | | | |
Collapse
|
9
|
Chekanov V, Dumcius A, Karakozov P. Adaptive cardiac binding: a new method for treatment of dilated cardiomyopathy. Asian Cardiovasc Thorac Ann 2005; 13:351-6. [PMID: 16304224 DOI: 10.1177/021849230501300412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adaptive cardiac binding, a new surgical procedure for advanced heart failure, allows a gradual increase in compression on the dilated heart, with separate loads on the left and right ventricles. A canine model of biventricular heart failure (anastomosis between the carotid artery and jugular vein and doxorubicin administration) was created. Twenty-four dogs were divided into 4 groups: control, adynamic cardiomyoplasty, plastic cardiac binding, and adaptive cardiac binding. In the adaptive cardiac binding group, fluid was added (35, 15, and 10 mL) to each side of the pouch at weeks 1, 2, and 3. Left ventricular ejection fraction was 59%+/-4% before induction of heart failure and 27%+/-2% 6 weeks later. Immediately after the main operation, left ventricular ejection fractions were 35+/-3% (cardiomyoplasty), 34%+/-4% (plastic cardiac binding), and 35%+/-4% (adaptive cardiac binding). Four weeks later, left ventricular ejection fraction had not changed in the cardiomyoplasty (37%+/-3%) and plastic cardiac binding (32%+/-2%) groups, but significantly increased in the adaptive cardiac binding group (48%+/-5%); it had decreased to 23%+/-4% in controls. Adaptive cardiac binding is a promising new surgical approach for patients with end-stage heart failure.
Collapse
Affiliation(s)
- Valeri Chekanov
- Health Care Associates, Milwaukee Heart Institute at Aurora Sinai Center, Milwaukee, WI 53201-0342, USA, and Institute for Biomedical Research, Clinic of Cardiac Surgery, Kaunas University of Medicine, Lithuania.
| | | | | |
Collapse
|
10
|
Feindt P, Boeken U, Schipke JD, Litmathe J, Zimmermann N, Gams E. Ventricular constraint in dilated cardiomyopathy: a new, compliant textile mesh exerts prophylactic and therapeutic properties. J Thorac Cardiovasc Surg 2005; 130:1107. [PMID: 16214527 DOI: 10.1016/j.jtcvs.2005.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/04/2005] [Accepted: 03/23/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND Dilated cardiomyopathy is associated with a progressive decrease in cardiac function, leading to end-stage heart failure. We aimed to stop this process by mechanically constraining the heart with a new, compliant textile mesh. METHODS In 16 male Munich minipigs (50 +/- 7 kg), dilated cardiomyopathy with congestive heart failure was induced through 4 weeks of rapid ventricular pacing (220 beats/min). In the early-mesh group (n = 8), a polyvinylidene fluoride mesh was positioned around both ventricles before pacing was started. In the other group (n = 8), experimental dilated cardiomyopathy through rapid pacing was induced (no mesh). After mesh grafting, rapid pacing was continued (late mesh). RESULTS Rapid pacing in the no-mesh group (control group) significantly decreased both systolic (cardiac output, peak systolic pressure, and the derivative of pressure increase [dP/dt(max)]) and diastolic (minimum rate of pressure rise [dP/dt(min)] and left ventricular end-diastolic pressure) variables, whereas these variables remained almost unchanged in the early-mesh group. In the late-mesh group the passive-elastic constraint not only prevented further deterioration but even exerted reverse remodeling to some extent (dP/dt(max) and left ventricular end-diastolic pressure, P < .05). CONCLUSIONS Ventricular constraint with the new mesh seems to be a prophylactic and therapeutic option in cardiac insufficiency caused by ventricular dilation. This passive-elastic cardioplasty induced reverse remodeling of dilated hearts and significantly improved diastolic and systolic ventricular function.
Collapse
Affiliation(s)
- P Feindt
- Department of Thoracic and Cardiovascular Surgery, Heinrich-Heine-University Hospital Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Ljubicic V, Adhihetty PJ, Hood DA. Application of Animal Models: Chronic Electrical Stimulation-Induced Contractile Activity. ACTA ACUST UNITED AC 2005; 30:625-43. [PMID: 16293907 DOI: 10.1139/h05-144] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unilateral, chronic low-frequency electrical stimulation (CLFS) is an experimental model that evokes numerous biochemical and physiological adaptations in skeletal muscle. These occur within a short time frame and are restricted to the stimulated muscle. The humoral effects of whole body exercise are eliminated and the nonstimulated contralaterai limb can often be used as a control muscle, if possible effects on the contralateral side are considered. CLFS induces a fast-to-slow transformation of muscle because of alterations in calcium dynamics and myofibrillar proteins, and a white-to-red transformation because of changes in mitochondrial enzymes, myoglobin, and the induction of angiogenesis. These adaptations occur in a coordinated time-dependent manner and result from altered gene expression, including transcriptional and posttranscriptional processes. CLFS techniques have also been applied to myocytes in cell culture, which provide a greater opportunity for the delivery of pharmacological agents or for the application of gene transfer methodologies. Clinical applications of the CLFS technique have been limited, but they have shown potential therapeutic value in patients in whom voluntary muscle contraction is not possible due to debilitating disease and/or injury. Thus the CLFS technique has great value for studying various aspects of muscle adaptation, and its wider scientific application to a variety of neuromuscular-based disorders in humans appears to be warranted. Key words: skeletal muscle, muscle plasticity, endurance training, mitochondrial biogenesis, fiber types
Collapse
Affiliation(s)
- Vladimir Ljubicic
- School of Kinesiology and Health Science and Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
12
|
De Angelis K, Senna S, Irigoyen MC, Cestari IA. Diabetes-induced alterations in latissimus dorsi muscle properties impair effectiveness of dynamic cardiomyoplasty in rats. Artif Organs 2004; 28:326-31. [PMID: 15084190 DOI: 10.1111/j.1525-1594.2004.47349.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Short-term diabetes was induced in male Wistar rats with streptozotocin injection. The effects of diabetes on latissimus dorsi (LD) muscle contractile and biochemical properties and acute cardiomyoplasty (CDM) were assessed and compared with data from 16 control rats. Isometric force, contractile properties, and fatigue were measured in electrically stimulated muscles (0.3 ms, 1-256 Hz), and Na+K+ and Ca2+ATPase activities were quantified in muscle membrane preparations. Systolic arterial pressure and aortic blood flow were recorded at rest and during LD muscle stimulation. Compared with control muscle, diabetic muscle showed smaller maximum specific tetanic tension and lower rates of rise and fall in force. Diabetic LD muscle also showed lower muscle enzyme activities. Twitch tension and fatigue did not differ between groups. Smaller increases in aortic flow and systolic pressure after CDM were found in diabetic rats compared to controls. The marked decrease in CDM effectiveness in diabetic rats likely reflected the alterations in muscle properties associated with diabetes.
Collapse
Affiliation(s)
- Kátia De Angelis
- Laboratory of Human Movement, São Judas Tadeu University, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
13
|
Rigatelli G, Rossini K, Vindigni V, Mazzoleni F, Rigatelli G, Carraro U. New perspectives in the treatment of damaged myocardium using autologous skeletal myoblasts. CARDIOVASCULAR RADIATION MEDICINE 2004; 5:84-87. [PMID: 15464945 DOI: 10.1016/j.carrad.2004.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/13/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
Autologous skeletal myoblast transplantation may be used to ameliorate the healing process following myocardium infarct and, hopefully, cardiomyopathies. Despite successful animal experimentation, several issues need to be addressed in clinical settings, i.e., the impact of the delivery route, the extent of short- and long-term survival, and differentiation of the injected skeletal myoblasts. The authors offer some new hypotheses resulting from basic research, i.e., where and when to inject the myogenic cells, whatever their source, how to decrease new myofiber atrophy and improve their regeneration. Although these new hypotheses still need to be tested in humans, they may be decisive for future experimental studies and will lead to making endovascular cell implantation a more effective way to treat ischemic heart disease and failure.
Collapse
|