1
|
Wang L, Ma J, Chen C, Lin B, Xie S, Yang W, Qian J, Zhang Y. Isoquercitrin alleviates pirarubicin-induced cardiotoxicity in vivo and in vitro by inhibiting apoptosis through Phlpp1/AKT/Bcl-2 signaling pathway. Front Pharmacol 2024; 15:1315001. [PMID: 38562460 PMCID: PMC10982373 DOI: 10.3389/fphar.2024.1315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Due to the cardiotoxicity of pirarubicin (THP), it is necessary to investigate new compounds for the treatment of THP-induced cardiotoxicity. Isoquercitrin (IQC) is a natural flavonoid with anti-oxidant and anti-apoptosis properties. Thus, the present study aimed to investigate the influence of IQC on preventing the THP-induced cardiotoxicity in vivo and in vitro. Methods: The optimal concentration and time required for IQC to prevent THP-induced cardiomyocyte damage were determined by an MTT assay. The protective effect was further verified in H9c2 and HCM cells using dichlorodihydrofluorescein diacetate fluorescent probes, MitoTracker Red probe, enzyme-linked immunosorbent assay, JC-1 probe, and real time-quantitative polymerase chain reaction (RT-qPCR). Rats were administered THP to establish cardiotoxicity. An electrocardiogram (ECG) was performed, and cardiac hemodynamics, myocardial enzymes, oxidative stress indicators, and hematoxylin-eosin staining were studied. Voltage-dependent anion channel 1 (VDAC1), adenine nucleotide translocase 1 (ANT1), and cyclophilin D (CYPD) were detected by qRT-PCR, and the Phlpp1/AKT/Bcl-2 axis proteins were detected by western blot, confirming that IQC markedly increased cell viability and superoxide dismutase (SOD) levels, diminished the levels of ROS and MDA, and elevated mitochondrial function and apoptosis in vivo and in vitro. Results: Results showed that IQC reduced THP-induced myocardial histopathological injury, electrocardiogram (ECG) abnormalities, and cardiac dysfunction in vivo. IQC also decreased serum levels of MDA, BNP, CK-MB, c-TnT, and LDH, while increasing levels of SOD and GSH. We also found that IQC significantly reduced VDAC1, ANT1, and CYPD mRNA expression. In addition, IQC controlled apoptosis by modulating Phlpp1/AKT/Bcl-2 signaling pathways. IQC markedly increased H9c2 and HCM cell viability and SOD levels, diminished the levels of ROS and MDA, and elevated mitochondrial function in H9c2 and HCM cells to defend against THP-induced cardiomyocyte apoptosis in vitro. The AKT inhibitor IMQ demonstrated that IQC lacked antioxidant and anti-apoptotic properties. Moreover, our data showed that IQC regulates Phlpp1 expression, thereby influencing the expression levels of p-AKT, cytochrome c, caspase-3, caspase-9, Bcl-2, and Bax. Discussion: In conclusion, our results indicate that IQC protects the changes in mitochondrial membrane permeability in cardiomyocytes by regulating the Phlpp1/AKT/Bcl-2 signaling pathway, inhibits the release of cytc from the mitochondrial inner membrane to the cytoplasm, forms apoptotic bodies, induces cell apoptosis, and reduces THP induced cardiotoxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| | - Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Qian
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| |
Collapse
|
2
|
Zhang Y, Liu S, Ma JL, Chen C, Huang P, Ji JH, Wu D, Ren LQ. Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity through the AKT/Bcl-2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153815. [PMID: 34781232 DOI: 10.1016/j.phymed.2021.153815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a broad-spectrum anti-tumor drug that has been associated with cardiotoxicity. Plant extracts have been shown to confer protection against DOX-induced cardiotoxicity. Apocynum venetum L. belongs to the Apocynaceae family. Flavonoid extracted from Apocynum venetum L. possess various biological effects, such as lowering blood pressure levels, sedation, diuresis, anti-aging, and improving immunity. PURPOSE This study investigated the mechanism by which dry leaf extract of Apocynum venetum L. (AVLE) alleviates DOX-induced cardiomyocyte apoptosis. METHODS HPLC-MS/MS and HPLC methods were used to analyze the components of AVLE. The effects of DOX and AVLE on apoptosis of H9c2 and HMC cells were assessed using the MTT assay. Calcein AM/PI, TUNEL, and flow cytometry were carried out to determine the effects of AVLE on DOX-induced apoptosis. The effect of AVLE on DOX-induced oxidative stress in cardiomyocytes was investigated using ELISA test. Mito-Tracker Red CMXRos, JC-1, and RT-qPCR assays were performed to evaluate the impact of AVLE on DOX-induced cardiomyocyte mitochondrial activity and membrane permeability. Western blot assay was carried out to determine the activation of multiple signaling molecules, including phosphorylated-protein kinase B (p-AKT), Cytochrome c, Bcl-2 family, and caspase family in the apoptosis pathway. The AKT inhibitor was used to block AKT/Bcl-2 signaling pathway to investigate the role of AKT in the protection conferred by AVLE against DOX-induced cardiotoxicity. RESULTS A total of 8 compounds, including rutin, hyperoside, isoquercetin, unidentified compounds, myricetin, quercetin, quercetin-3-O-glucuronide and kaempferol, were detected in AVLE. Of note, DOX suppressed lactate dehydrogenase (LDH) levels, aggravated oxidative stress, and promoted cardiomyocyte apoptosis. It also upregulated the mRNA expression levels of voltage-dependent anion channel 1 (VDAC1), adenosine nucleotide transporter 1 (ANT1), and cyclophilin D (CYPD), while suppressing mitochondrial activity and mitochondrial membrane permeability. Treatment with DOX altered the expression levels of apoptosis-associated proteins, Bcl-2 and Bax. However, AVLE treatment alleviated DOX-induced effects on cardiomyocytes. In addition, application of AKT inhibitors promoted DOX-induced apoptosis and reversed the inhibitory effects of AVLE on DOX-induced apoptosis. CONCLUSIONS AVLE confer cardio protection by suppressing oxidative stress and apoptosis of cardiomyocytes via AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jiu-Long Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jia-Hua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Di Wu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun 2015; 463:262-7. [DOI: 10.1016/j.bbrc.2015.05.042] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 02/08/2023]
|
4
|
Burelle Y, Bemeur C, Rivard ME, Thompson Legault J, Boucher G, LSFC Consortium, Morin C, Coderre L, Des Rosiers C. Mitochondrial vulnerability and increased susceptibility to nutrient-induced cytotoxicity in fibroblasts from leigh syndrome French canadian patients. PLoS One 2015; 10:e0120767. [PMID: 25835550 PMCID: PMC4383560 DOI: 10.1371/journal.pone.0120767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 02/07/2015] [Indexed: 01/20/2023] Open
Abstract
Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects.
Collapse
Affiliation(s)
- Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Chantal Bemeur
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Marie-Eve Rivard
- Montreal Heart Institute, Montreal, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Julie Thompson Legault
- Montreal Heart Institute, Montreal, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | | | - Charles Morin
- Department of Pediatrics and Clinical Research Unit, Complexe hospitalier de la Sagamie, Chicoutimi, QC, Canada
| | - Lise Coderre
- Montreal Heart Institute, Montreal, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Montreal, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- * E-mail:
| |
Collapse
|
5
|
Fillmore N, Huqi A, Jaswal JS, Mori J, Paulin R, Haromy A, Onay-Besikci A, Ionescu L, Thébaud B, Michelakis E, Lopaschuk GD. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS One 2015; 10:e0120257. [PMID: 25768019 PMCID: PMC4358990 DOI: 10.1371/journal.pone.0120257] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 01/07/2023] Open
Abstract
Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.
Collapse
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alda Huqi
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jagdip S. Jaswal
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Mori
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roxane Paulin
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alois Haromy
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Arzu Onay-Besikci
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lavinia Ionescu
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thébaud
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Evangelos Michelakis
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D. Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
6
|
Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction. PLoS One 2013; 8:e61369. [PMID: 23585895 PMCID: PMC3621834 DOI: 10.1371/journal.pone.0061369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate), and MCT diet (21% medium-chain triglycerides, no palmitate). We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.
Collapse
|
7
|
Flowers M, Fabriás G, Delgado A, Casas J, Abad JL, Cabot MC. C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res Treat 2011; 133:447-58. [PMID: 21935601 DOI: 10.1007/s10549-011-1768-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/02/2011] [Indexed: 01/12/2023]
Abstract
The sphingolipid ceramide is known to play a central role in chemo- and radiation-induced cell death. Acid ceramidase (AC) hydrolyzes ceramide, and thus reduces intracellular levels of this proapoptotic lipid. The role of AC as a putative anticancer target is supported by reports of upregulation in prostate cancer and in some breast tumors. In this study, we determined whether the introduction of an AC inhibitor would enhance the apoptosis-inducing effects of C6-ceramide (C6-cer) in breast cancer cells. Cultured breast cancer cells were treated with DM102 [(2R,3Z)-N-(1-hydroxyoctadec-3-en-2-yl)pivalamide, C6-cer, or the combination. Cell viability and cytotoxic synergy were assessed. Activation of apoptotic pathways, generation of reactive oxygen species, and mitochondrial transmembrane potential were determined. DM102 was a more effective AC inhibitor than N-oleoylethanolamine (NOE) and (1R,2R)-2-N-(tetradecanoylamino)-1-(4'-nitrophenyl)-1,3-propandiol (B-13) in MDA-MB-231, MCF-7, and BT-474 cells. As single agents, C6-cer (IC(50) 5-10 μM) and DM102 (IC(50) 20 μM) were only moderately cytotoxic in MDA-MB-231, MCF-7, and SK-BR-3 cells. Co-administration, however, produced synergistic decreases in viability (combination index <0.5) in all cell lines. Apoptosis was confirmed in MDA-MB-231 cells by detection of caspase 3 cleavage and a >3-fold increase in caspase 3/7 activation, PARP cleavage, and a >70% increase in Annexin-V positive cells. C6-cer/DM102 increased ROS levels 4-fold in MDA-MB-231 cells, shifted the ratio of Bax:Bcl-2 to >9-fold that of control cells, and resulted in mitochondrial membrane depolarization. DM102 also increased the synthesis of (3)H-palmitate-labeled long-chain ceramides by 2-fold when C6-cer was present. These data support the effectiveness of targeting AC in combination with exogenous short-chain ceramide as an anticancer strategy, and warrant continued investigation into the utility of the C6-cer/DM102 drug duo in human breast cancer.
Collapse
Affiliation(s)
- Margaret Flowers
- Department of Experimental Therapeutics, John Wayne Cancer Institute, Santa Monica, CA, USA
| | | | | | | | | | | |
Collapse
|
8
|
Knowles CJ, Dionne M, Cebova M, Pinz IM. Palmitate-Induced Translocation of Caveolin-3 and Endothelial Nitric Oxide Synthase in Cardiomyocytes. ACTA ACUST UNITED AC 2011; 11:27-36. [PMID: 21935356 DOI: 10.3844/ojbsci.2011.27.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: Palmitate is a known cardiac lipotoxin that blunts cardiomyocyte contractile function and induces apoptosis, likely via accumulation of the lipotoxic ceramide. Ceramide is a sphingolipid and localizes to caveolae, which are lined in the inner membrane leaflet by caveolin proteins. In this study, we investigated the effects of palmitate on caveolin proteins and on endothelial Nitric Oxide Synthase (eNOS), a signaling mediator that binds to caveolin-3, the muscle-specific caveolae scaffolding protein. APPROACH AND RESULTS: Mice fed a high palmitate diet for 12 weeks showed pathologically increased coronary flow in the ex vivo Langendorff heart especially at low extracellular calcium concentrations. In these hearts, eNOS Ser1177 phosphorylation was increased compared to standard or high fat control diet hearts. This suggested that eNOS, a potent vasodilator in the heart, is affected by palmitate. In vitro experiments showed that exposure of HL-1 cardiomyocytes to palmitate causes translocation of eNOS from the plasma membrane to a perinuclear location and causes an 80% decrease in Thr495 phosphorylation. This corresponded with a 41% decrease in NO production. To determine the mechanism of the loss of plasma membrane bound eNOS, we investigated the effect of palmitate on caveolin-3 and found decreased caveolin-3 protein levels by 70% compared to control cells. The remaining 30% of caveolin-3 was localized to a perinuclear location. In contrast to previous studies, palmitate did not cause apoptosis in cardiomyocytes. CONCLUSION: Overall, we show for the first time that a high palmitate diet leads to loss of caveolin-3 in cardiomyocytes and to coronary dysfunction of the mouse heart, via uncoupling of eNOS.
Collapse
Affiliation(s)
- Catherine J Knowles
- Department of Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, ME 04074, Scarborough
| | | | | | | |
Collapse
|
9
|
Monette JS, Gómez LA, Moreau RF, Bemer BA, Taylor AW, Hagen TM. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations. Biochem Biophys Res Commun 2010; 398:272-7. [PMID: 20599536 PMCID: PMC2939858 DOI: 10.1016/j.bbrc.2010.06.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 02/07/2023]
Abstract
Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other.
Collapse
Affiliation(s)
- Jeffrey S. Monette
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Luis A. Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Régis F. Moreau
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Brett A. Bemer
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Alan W. Taylor
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Tory M. Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Rabkin SW, Lodhia P, Lodha P. Stearic acid-induced cardiac lipotoxicity is independent of cellular lipid and is mitigated by the fatty acids oleic and capric acid but not by the PPAR agonist troglitazone. Exp Physiol 2009; 94:877-87. [PMID: 19482900 DOI: 10.1113/expphysiol.2009.048082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The objective of this study was to examine the potential of stearic acid to induce cardiomyocyte cell death and the hypothesis that the amount of cellular lipid is a determinant of cell death. In cardiomyocytes from embryonic chick heart, stearic acid (SA) produced a significant (P < 0.001) concentration-dependent increase in cell death with an ED(50) of 71 microM. In contrast, capric (C10:0) or oleic acid (OA; C18:1), at < 200 microM, did not alter cell viability. Stearic acid-induced cell death was significantly reduced by OA and to a lesser extent by capric acid. Neither OA nor capric acid altered cell death produced by potassium cyanide and deoxyglucose. Stearic acid (100 microM) induced a significant (P < 0.05) twofold increase in cellular lipid as assessed by Nile blue and Sudan Black staining. A role for cellular lipid in cardiomyocyte death was excluded because OA increased cellular lipid, at concentrations that did not induce cell death; OA did not alter SA-induced cellular fat stores but reduced cell death; and the PPARgamma; agonist troglitazone at concentrations that reduced cellular lipid content did not alter cell death. High concentrations of troglitazone, however, induced cell death. In summary, SA is a potent inducer of cardiac cell death and intracellular lipid accumulation. The amount of intracellular lipid, however, is not a determinant of cardiomyocyte cell death. Troglitazone has potential cardiotoxicity at high doses but, at lower concentrations, does not prevent cardiac lipotoxicity, which can be completely prevented by low concentrations of oleic acid.
Collapse
Affiliation(s)
- Simon W Rabkin
- University of British Columbia, 9th Floor, 2775 Laurel Street, Vancouver, BC V5Z1M9, Canada.
| | | | | |
Collapse
|
11
|
Klassen SS, Rabkin SW. The metalloporphyrin FeTPPS but not by cyclosporin A antagonizes the interaction of peroxynitrate and hydrogen peroxide on cardiomyocyte cell death. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:149-61. [DOI: 10.1007/s00210-008-0342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022]
|
12
|
Abstract
The dramatic increase in the prevalence of obesity and its strong association with cardiovascular disease have resulted in unprecedented interest in understanding the effects of obesity on the cardiovascular system. A consistent, but puzzling clinical observation is that obesity confers an increased susceptibility to the development of cardiac disease, while at the same time affording protection against subsequent mortality (termed the obesity paradox). In this review we focus on evidence available from human and animal model studies and summarize the ways in which obesity can influence structure and function of the heart. We also review current hypotheses regarding mechanisms linking obesity and various aspects of cardiac remodeling. There is currently great interest in the role of adipokines, factors secreted from adipose tissue, and their role in the numerous cardiovascular complications of obesity. Here we focus on the role of leptin and the emerging promise of adiponectin as a cardioprotective agent. The challenge of understanding the association between obesity and heart failure is complicated by the multifaceted interplay between various hemodynamic, metabolic, and other physiological factors that ultimately impact the myocardium. Furthermore, the end result of obesity-associated changes in the myocardial structure and function may vary at distinct stages in the progression of remodeling, may depend on the individual pathophysiology of heart failure, and may even remain undetected for decades before clinical manifestation. Here we summarize our current knowledge of this complex yet intriguing topic.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Biology, York University, Toronto, Canada
| | | | | |
Collapse
|
13
|
Rabkin SW, Klassen SS. Palmitate-induced NO production has a dual action to reduce cell death through NO and accentuate cell death through peroxynitrite formation. Prostaglandins Leukot Essent Fatty Acids 2008; 78:147-55. [PMID: 18191557 DOI: 10.1016/j.plefa.2007.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/23/2007] [Indexed: 10/22/2022]
Abstract
The objective of this study was to determine the role of palmitate-induced stimulation of nitric oxide synthase (NOS) on palmitate-induced cell death, specifically distinguishing the effects of the subtype NOS2 from NOS3, defining the effect of NO on mitochondria death pathways, and determining whether palmitate induces peroxynitrite formation which may impact cardiomyocyte cell survival. Cardiomyocytes from embryonic chick hearts were treated with palmitate 300-500 microM. Cell death was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The ability of palmitate to induce NO production and its consequences were tested by using the NOS inhibitor 7-nitroindazole (7-N) and the peroxynitrite scavenger (5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) chloride) (FeTPPS). The effect of palmitate on the mitochondria was assessed by Western blotting for cytochrome c release into the cytosol, and assessment of mitochondrial transmembrane potential (DeltaPsi(m)) by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide staining and immunocytochemistry. The NOS inhibitor 7-N, which is selective for NOS2 and not for NOS3, significantly (p<0.05) increased palmitate-induced cell death. In contrast, 7-N did not alter cell death produced by the combination of potassium cyanide and deoxyglucose, which, respectively, inhibit glycolysis and oxidative phosphorylation. The mitochondrial actions of palmitate, specifically palmitate-induced translocation of mitochondrial cytochrome c to cytosol and loss of mitochondrial transmembrane potential, were not altered by pretreatment with 7-N. FeTPPS, which isomerizes peroxynitrite to nitrate and thereby reduces the toxic effects of peroxynitrite, produced a significant reduction in palmitate-induced cell death. In summary, these data suggest that palmitate stimulates NO production, which has a dual action to protect against cell death or to induce cell death. Palmitate-induced cell death is mediated, in part, through NO generation, which leads to peroxynitrite formation. The protective effect of NO is operative through stimulation of NOS2 but not NOS3. The actions of NO on palmitate-induced cell death are independent of mitochondrial cell death pathways.
Collapse
Affiliation(s)
- Simon W Rabkin
- University of British Columbia, 9th Floor, 2775 Laurel Street, Vancouver, BC, Canada V5Z 1M9.
| | | |
Collapse
|
14
|
|
15
|
Abstract
The discovery of apoptosis sheds a new light on the role of cell death in myocardial infarction and other cardiovascular diseases. There is mounting evidence that apoptosis plays an important role at multiple points in the evolution of myocardial infarction, and comprises not only cardiomyocytes but also inflammatory cells, as well as cells of granulation tissue and fibrous tissue. It appears that apoptosis contributes to cardiomyocyte loss in the border zone and in remote myocardium in the early phase, as well as months after myocardial infarction, thus playing a role in remodeling and development of heart failure after myocardial infarction. Apoptosis, being a highly regulated process, is a potential target for therapeutic intervention. Caspases are the key effector molecules in apoptosis, and are therefore a particularly attractive target for pharmacological modulation of apoptosis. Although several potential therapeutic agents have been tested in animal models of ischemia/reperfusion heart injury with some success, nearly none of the specific antiapoptotic agents have reached the stage of clinical research.
Collapse
Affiliation(s)
- Nina Zidar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
16
|
Rabkin SW, Klassen SS. Omapatrilat enhances adrenomedullin's reduction of cardiomyocyte cell death. Eur J Pharmacol 2007; 562:174-82. [PMID: 17343842 DOI: 10.1016/j.ejphar.2007.01.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 01/12/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The objective of this study was to determine whether adrenomedullin, a vasodilator peptide, modulates the process of cell death in cardiomyocytes and whether its effect would be enhanced by the endopeptidase inhibitor omapatrilat, which reduces adrenomedullin degradation. Further, we sought to determine whether the effect of adrenomedullin involved an action to preserve mitochondrial transmembrane potential (DeltaPsi(m)). Cardiomyocytes in culture were treated with agents that interrupted the mitochondrial electron transport chain, inhibiting glycolysis and oxidative phosphorylation. Cell death was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and DeltaPsi(m) was assessed by fluorescent microscopy. Cytochrome c loss from mitochondria and appearance in cytosol was determined by Western blotting. Potassium cyanide (KCN) plus deoxyglucose or antimycin A, for 24 h, produced significant (p<0.01) concentration-dependent reductions in cell viability or increases in cell death. Adrenomedullin reduced cell death produced in this manner and the effect of adrenomedullin was enhanced by treatment with omapatrilat. In contrast, there was no additional reduction in cell death by lisinopril treatment. Omapatrilat plus adrenomedullin reduced the KCN plus deoxyglucose-induced increase in cytosolic cytochrome c. A likely mechanism centers on the ability of adrenomedullin plus omapatrilat to prevent the decline in mitochondrial DeltaPsi(m) produced by KCN plus deoxyglucose treatment. In summary, adrenomedullin plus omapatrilat limited the decline in mitochondrial DeltaPsi(m) that accompanies interruption of mitochondrial metabolism and limited the extent of cell death in cardiomyocytes treated with KCN plus deoxyglucose or antimycin. Adrenomedullin plus the endopeptidase inhibitor omapatrilat may be a useful strategy to protect cardiomyocytes from cell death, in conditions associated with impairment of mitochondrial function.
Collapse
Affiliation(s)
- Simon W Rabkin
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, B.C., Canada.
| | | |
Collapse
|
17
|
Dindo D, Dahm F, Szulc Z, Bielawska A, Obeid LM, Hannun YA, Graf R, Clavien PA. Cationic long-chain ceramide LCL-30 induces cell death by mitochondrial targeting in SW403 cells. Mol Cancer Ther 2006; 5:1520-9. [PMID: 16818511 DOI: 10.1158/1535-7163.mct-05-0513] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are sphingolipid second messengers that are involved in the mediation of cell death. There is accumulating evidence that mitochondria play a central role in ceramide-derived toxicity. We designed a novel cationic long-chain ceramide [omega-pyridinium bromide D-erythro-C16-ceramide (LCL-30)] targeting negatively charged mitochondria. Our results show that LCL-30 is highly cytotoxic to SW403 cells (and other cancer cell lines) and preferentially accumulates in mitochondria, resulting in a decrease of the mitochondrial membrane potential, release of mitochondrial cytochrome c, and activation of caspase-3 and caspase-9. Ultrastructural analyses support the concept of mitochondrial selectivity. Interestingly, levels of endogenous mitochondrial C16-ceramide decreased by more than half, whereas levels of sphingosine-1-phosphate increased dramatically and selectively in mitochondria after administration of LCL-30, suggesting the presence of a mitochondrial sphingosine kinase. Of note, intracellular long-chain ceramide levels and sphingosine-1-phosphate remained unaffected in the cytosolic and extramitochondrial (nuclei/cellular membranes) cellular fractions. Furthermore, a synergistic effect of cotreatment of LCL-30 and doxorubicin was observed, which was not related to alterations in endogenous ceramide levels. Cationic long-chain pyridinium ceramides might be promising new drugs for cancer therapy through their mitochondrial preference.
Collapse
Affiliation(s)
- Daniel Dindo
- Swiss HPB Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cardiomyopathy is associated with both rare genetic metabolic abnormalities and highly prevalent diseases characterized by elevated serum triglycerides and nonesterified fatty acids, such as obesity and type 2 diabetes. In these disorders, an imbalance between fatty acid uptake and utilization leads to the inappropriate accumulation of free fatty acids and neutral lipids within cardiomyocytes. Through the process of lipotoxicity, this lipid overload causes cellular dysfunction, cell death, and eventual organ dysfunction. This review focuses on lipotoxicity in the heart, with an emphasis on the contribution of this process to the pathogenesis of cardiomyopathy associated with obesity, diabetes, and the metabolic syndrome. The magnitude of the current worldwide epidemic of obesity and type 2 diabetes suggests that understanding the pathogenesis of cardiac complications associated with these diseases will contribute substantially to improvements in health care.
Collapse
Affiliation(s)
- Nica M Borradaile
- Department of Internal Medicine, Washington University School of Medicine, Box 8086, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
19
|
Kong JY, Klassen SS, Rabkin SW. Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Mol Cell Biochem 2006; 278:39-51. [PMID: 16180087 DOI: 10.1007/s11010-005-1979-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 02/03/2005] [Indexed: 10/25/2022]
Abstract
This study examined the impact of ceramide, an intracellular mediator of apoptosis, on the mitochondria to test the hypothesis that ceramide utilized p38 MAPK in the mitochondria to alter mitochondrial potential and induce apoptosis. The capacity of ceramide to adversely affect mitochondria was demonstrated by the significant loss of mitochondrial potential (DeltaPsim), indicated by a J-aggregate fluorescent probe, after embryonic chick cardiomyocytes were treated with the cell permeable ceramide analogue C2-ceramide. p38 MAPK was identified in the mitochondrial fraction of the cell and p38 MAPK phosphorylation in this mitochondrial fraction of the cell occurred with ceramide treatment. In addition, SAPK phosphorylation and a decrease in ERK phosphorylation occurred in whole cell lysates after ceramide treatment. The p38 MAPK inhibitor SB 202190 but not the MEK inhibitor PD 98059 significantly inhibited ceramide-induced apoptosis and loss of DeltaPsim. These data suggest that p38 MAPK is present in the mitochondria and its activation by ceramide indicates local signaling more directly coupled to the mitochondrial pathway in apoptosis.
Collapse
Affiliation(s)
- Jennifer Y Kong
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
20
|
Zheng X, Hu SJ. Effects of simvastatin on cardiac performance and expression of sarcoplasmic reticular calcium regulatory proteins in rat heart. Acta Pharmacol Sin 2005; 26:696-704. [PMID: 15916736 DOI: 10.1111/j.1745-7254.2005.00105.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate the effect of simvastatin on the cardiac contractile function and the alteration of gene and protein expression of the sarcoplasmic calcium regulatory proteins, including sarcoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban (PLB), and ryanodine receptor 2 (RyR2) in rat hearts. METHODS Langendorff-perfused rat hearts were subjected to 60-min perfusion with different concentrations of simvastatin (1, 3, 10, 30, or 100 microml/L), and the parameters of cardiac function such as left ventricular developed pressure (LVDP), +dp/dtmax, and -dp/dtmax were determined. The cultured neonatal rat ventricular cardiomyocytes were incubated with simvastatin (1, 3, 10, 30, and 100 micromol/L) for 1 h or 24 h. The levels of SERCA, PLB, and RyR2 expression were measured by reverse transcription-polymerase chain reaction and Western blot. Cytotoxic effect of simvastatin on ventricular cardiomyocytes was assessed by the MTT colorimetric assay. RESULTS LVDP, +dp/dtmax, and -dp/dtmax of hearts were increased significantly after treatment with simvastatin 3, 10, and 30 micromol/L. In simvastatin-treated isolated hearts, the levels of mRNA expression of SERCA and RyR2 were elevated compared with the control (P<0.05), while the mRNA expression of PLB did not change. After the cultured neonatal rat ventricular cardiomyocytes were incubated with 3, 10, 30, and 100 mumol/L simvastatin for 1 h, SERCA and RyR2 mRNA expressions of cardiomyocytes rose, but there was no alteration in protein expressions. However, with the elongation of simvastatin treatment to 24 h, the protein expression of SERCA and RyR2 were also elevated. Additionally, simvastatin (1-30 micromol/L) had no influence on cell viability of cultured cardiac myocytes, but simvastatin 100 micromol/L inhibited the cell viability. CONCLUSION Simvastatin improved cardiac performance accompanied by the elevation of SERCA and RyR2 gene and protein expression.
Collapse
Affiliation(s)
- Xia Zheng
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | | |
Collapse
|
21
|
Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:112-26. [PMID: 15904868 DOI: 10.1016/j.bbalip.2005.03.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 12/30/2022]
Abstract
The metabolic phenotype of hearts has been investigated using rodent models of type 2 diabetes which exhibit obesity and insulin resistance: db/db and ob/ob mice, and Zucker fatty and ZDF rats. In general, cardiac fatty acid (FA) utilization is enhanced in type 2 diabetic hearts, with increased rates of FA oxidation (db/db, ob/ob and ZDF models) and increased FA esterification into cellular triacylglycerols (db/db hearts). Hearts from db/db and ob/ob mice and ZDF rat hearts all have elevated levels of myocardial triacylglycerols, consistent with enhanced FA utilization. A number of mechanisms may be responsible for enhanced FA utilization in type 2 diabetic hearts: (i) increased FA uptake into cardiac myocytes and into mitochondria; (ii) altered mitochondrial function, with up-regulation of uncoupling proteins; and (iii) stimulation of peroxisome proliferator-activated receptor-alpha. Enhanced cardiac FA utilization in rodent type 2 diabetic models is associated with reduced cardiac contractile function, perhaps as a consequence of lipotoxicity and/or reduced cardiac efficiency. Similar results have been obtained with human type 2 diabetic hearts, suggesting that pharmacological interventions that can reduce cardiac FA utilization may have beneficial effects on contractile function.
Collapse
Affiliation(s)
- Andrew N Carley
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
22
|
Affiliation(s)
- Yunping Li
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|
23
|
Epand RF, Martinou JC, Montessuit S, Epand RM. Fatty acids enhance membrane permeabilization by pro-apoptotic Bax. Biochem J 2004; 377:509-16. [PMID: 14535847 PMCID: PMC1223875 DOI: 10.1042/bj20030938] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/01/2003] [Accepted: 10/09/2003] [Indexed: 11/17/2022]
Abstract
Fatty acids are known promoters of apoptosis. In the present study, the direct role of fatty acids with regard to their ability to cause membrane permeabilization by Bax was explored. Addition of fatty acids to liposomes in the presence of cations greatly enhanced the permeabilizing activity of Bax, a pro-apoptotic Bcl-2 protein. This provides a putative mechanism for the role of fatty acids in apoptosis. It is not a result of detergent-like properties of fatty acids, since a different micelle-forming amphiphile, dilysocardiolipin, was strongly inhibitory. We also demonstrate that there is a synergistic effect on Bax-induced permeabilization between Ca(2+) and Mg(2+), both on the binding of Bax to liposomes as well as on the induction of the leakage of liposomal contents. Micromolar concentrations of Ca(2+) added externally or submicromolar concentrations of free Ca(2+) present in the medium were sufficient to promote Bax-induced permeabilization synergistically with externally added Mg(2+). These results indicate that Bax can induce leakage from liposomes at ion concentrations resembling those found physiologically. The synergistic effects of Ca(2+) and Mg(2+) were observed with liposomes with different lipid compositions. Thus the action of Bax is strongly modulated by the presence of bivalent cations that can act synergistically, as well as by micelle-forming lipid components that can be either stimulatory or inhibitory.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, ON, Canada L8N 3Z5.
| | | | | | | |
Collapse
|