1
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Maltha JC, Kuijpers-Jagtman AM. Mechanobiology of orthodontic tooth movement: An update. J World Fed Orthod 2023; 12:156-160. [PMID: 37349154 DOI: 10.1016/j.ejwf.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023]
Abstract
The purpose of this review is to provide an update on the changes at the cellular and tissue level occurring during orthodontic force application. For the understanding of this process, knowledge of the mechanobiology of the periodontal ligament and the alveolar bone are essential. The periodontal ligament and alveolar bone make up a functional unit that undergoes robust changes during orthodontic tooth movement. Complex molecular signaling is responsible for converting mechanical stresses into biochemical events with a net result of bone apposition and/or bone resorption. Despite an improved understanding of mechanical and biochemical signaling mechanisms, it is largely unknown how mechanical stresses regulate the differentiation of stem/progenitor cells into osteoblast and osteoclast lineages. To advance orthodontics, it is crucial to gain a better understanding of osteoblast differentiation from mesenchymal stem/progenitor cells and osteoclastogenesis from the hematopoietic/monocyte lineage.
Collapse
Affiliation(s)
- Jaap C Maltha
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine/Medical Faculty, University of Bern, Bern, Switzerland; Faculty of Dentistry, Universitas Indonesia, Campus Salemba, Jakarta, Indonesia.
| |
Collapse
|
4
|
Sun C, Janjic Rankovic M, Folwaczny M, Stocker T, Otto S, Wichelhaus A, Baumert U. Effect of Different Parameters of In Vitro Static Tensile Strain on Human Periodontal Ligament Cells Simulating the Tension Side of Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms23031525. [PMID: 35163446 PMCID: PMC8835937 DOI: 10.3390/ijms23031525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the effects of different magnitudes and durations of static tensile strain on human periodontal ligament cells (hPDLCs), focusing on osteogenesis, mechanosensing and inflammation. Static tensile strain magnitudes of 0%, 3%, 6%, 10%, 15% and 20% were applied to hPDLCs for 1, 2 and 3 days. Cell viability was confirmed via live/dead cell staining. Reference genes were tested by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and assessed. The expressions of TNFRSF11B, ALPL, RUNX2, BGLAP, SP7, FOS, IL6, PTGS2, TNF, IL1B, IL8, IL10 and PGE2 were analyzed by RT-qPCR and/or enzyme-linked immunosorbent assay (ELISA). ALPL and RUNX2 both peaked after 1 day, reaching their maximum at 3%, whereas BGLAP peaked after 3 days with its maximum at 10%. SP7 peaked after 1 day at 6%, 10% and 15%. FOS peaked after 3 days with its maximum at 3%, 6% and 15%. The expressions of IL6 and PTGS2 both peaked after 1 day, with their minimum at 10%. PGE2 peaked after 1 day (maximum at 20%). The ELISA of IL6 peaked after 3 days, with the minimum at 10%. In summary, the lower magnitudes promoted osteogenesis and caused less inflammation, while the higher magnitudes inhibited osteogenesis and enhanced inflammation. Among all magnitudes, 10% generally caused a lower level of inflammation with a higher level of osteogenesis.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Thomas Stocker
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
- Correspondence:
| |
Collapse
|
5
|
Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Front Bioeng Biotechnol 2021; 9:695053. [PMID: 34513810 PMCID: PMC8429507 DOI: 10.3389/fbioe.2021.695053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in response to mechanical stimuli. During this process, human periodontal ligament cells (hPDLCs) play a central role in mechanosensing and mechanotransduction. Various in vitro models have been introduced to investigate the effect of tension on hPDLCs. They provide a valuable body of knowledge on how tension influences relevant genes, proteins, and metabolites. However, no systematic review summarizing these findings has been conducted so far. Aim of this systematic review was to identify all related in vitro studies reporting tension application on hPDLCs and summarize their findings regarding force parameters, including magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was extracted and summarized. Studies' risk of bias was assessed using tailored risk of bias tools. Signaling pathways were identified by protein-protein interaction (PPI) networks using STRING and GeneAnalytics. According to our results, Flexcell Strain Unit® and other silicone-plate or elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively. Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for static tension. The 10 most commonly investigated genes, proteins and metabolites identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation. Gene-set enrichment analysis and PPI networks gave deeper insight into the involved signaling pathways. This review represents a brief summary of the massive body of knowledge in this field, and will also provide suggestions for future researches on this topic.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Effect of Aging on Homeostasis in the Soft Tissue of the Periodontium: A Narrative Review. J Pers Med 2021; 11:jpm11010058. [PMID: 33477537 PMCID: PMC7831085 DOI: 10.3390/jpm11010058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive decline or loss of physiological functions, leading to increased susceptibility to disease or death. Several aging hallmarks, including genomic instability, cellular senescence, and mitochondrial dysfunction, have been suggested, which often lead to the numerous aging disorders. The periodontium, a complex structure surrounding and supporting the teeth, is composed of the gingiva, periodontal ligament, cementum, and alveolar bone. Supportive and protective roles of the periodontium are very critical to sustain life, but the periodontium undergoes morphological and physiological changes with age. In this review, we summarize the current knowledge of molecular and cellular physiological changes in the periodontium, by focusing on soft tissues including gingiva and periodontal ligament.
Collapse
|
7
|
Han G, Liu W, Jiang H, Yu D, Hu M. Extreme intrusive force affects the expression of c-Fos and matrix metallopeptidase 9 in human dental pulp tissues. Medicine (Baltimore) 2020; 99:e19394. [PMID: 32118792 PMCID: PMC7478638 DOI: 10.1097/md.0000000000019394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study aimed to investigate the expression of c-Fos and matrix metallopeptidase 9 (MMP-9) in dental pulp of patients receiving orthodontic treatment via wire appliance.Fifteen patients (30 teeth in total) were randomly assigned to five groups: t = 0, t = 1, t = 4, t = 8 and t = 12 (n = 6). The first maxillary premolars of patients in the t = 0 group were extracted without any orthodontic treatment. An intrusive force of 300 g was applied on first maxillary premolars in the other four groups via wire appliances. This force was maintained for 1 week for t = 1 group, 4 weeks for t = 4 group, 8 weeks for t = 8 group, or 12 weeks for t = 12 group, before the teeth were extracted.The expression of c-Fos and MMP-9 in the pulps of each group was analyzed by immunohistochemical staining and real-time PCR. The relationship in the protein expression between c-Fos and MMP-9 in the dental pulp was analyzed by Pearson correlation analysis.Intrusive force of 300 g increased the expression of both c-Fos and MMP-9 in the dental pulp. The protein expression of MMP-9 in the dental pulp was significantly correlated with the expression of c-Fos (P < .001).Extreme intrusive force upregulates c-Fos and MMP-9 expression in the dental pulp. Moreover, protein expression of c-Fos and MMP-9 is significantly correlated under intrusive force.
Collapse
Affiliation(s)
- Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, PR China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University
| | - Dongsheng Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, PR China
| |
Collapse
|
8
|
Janjic Rankovic M, Docheva D, Wichelhaus A, Baumert U. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days. Clin Oral Investig 2019; 24:2497-2511. [PMID: 31728735 DOI: 10.1007/s00784-019-03113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability. MATERIALS AND METHODS CF of 2 g/cm2 was applied on HPDFs for 1-6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily. RESULTS In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2-5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed. CONCLUSION Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM). CLINICAL RELEVANCE Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.
Collapse
Affiliation(s)
- Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| |
Collapse
|
9
|
Papadopoulou A, Todaro A, Eliades T, Kletsas D. Effect of hyperglycaemic conditions on the response of human periodontal ligament fibroblasts to mechanical stretching. Eur J Orthod 2019; 41:583-590. [DOI: 10.1093/ejo/cjz051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Summary
Objectives
The aim of the present study was to investigate the impact of high glucose concentration on the response of human periodontal ligament fibroblasts (PDLFs) to cyclic tensile strain.
Materials and Methods
Human PDLFs were incubated under normal or high glucose conditions, and then were subjected to cyclic tensile stretching (8 per cent extension, 1 Hz). Gene expression was determined by quantitative real-time polymerase chain reaction. Intracellular reactive oxygen species (ROS) were determined by the 2’,7’-dichlorofluorescein-diacetate assay, activation of mitogen-activated protein kinase (MAPK) was monitored by western analysis and osteoblastic differentiation was estimated with Alizarin Red-S staining.
Results
Cyclic tensile stretching of PDLF leads to an immediate activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), as well as to the increased expression of the transcription factor c-fos, known to regulate many osteogenesis-related genes. At later time points, the alkaline phosphatase and osteopontin genes were also upregulated. Hyperglycaemic conditions inhibited these effects. High glucose conditions were unable to increase ROS levels, but they increased the medium’s osmolality. Finally, increase of osmolality mimics the inhibitory effect of hyperglycaemia on MAPK activation, c-fos and osteoblast-specific gene markers’ upregulation, as well as osteogenic differentiation capacity.
Conclusion
Our findings indicate that under high glucose conditions, human PDLFs fail to adequately respond to mechanical deformation, while their strain-elicited osteoblast differentiation ability is deteriorated. The aforementioned effects are most probably mediated by the increased osmolality under hyperglycaemic conditions.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Alexia Todaro
- Clinic of Orthodontics and Paediatric Dentistry, University of Zurich, Zurich, Switzerland
| | - Theodore Eliades
- Clinic of Orthodontics and Paediatric Dentistry, University of Zurich, Zurich, Switzerland
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| |
Collapse
|
10
|
Chukkapalli SS, Lele TP. Periodontal cell mechanotransduction. Open Biol 2019; 8:rsob.180053. [PMID: 30209038 PMCID: PMC6170509 DOI: 10.1098/rsob.180053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
The periodontium is a structurally and functionally complex tissue that facilitates the anchorage of teeth in jaws. The periodontium consists of various cell types including stem cells, fibroblasts and epithelial cells. Cells of the periodontium are constantly exposed to mechanical stresses generated by biological processes such as the chewing motions of teeth, by flows generated by tongue motions and by forces generated by implants. Mechanical stresses modulate the function of cells in the periodontium, and may play a significant role in the development of periodontal disease. Here, we review the literature on the effect of mechanical forces on periodontal cells in health and disease with an emphasis on molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL 32610, USA.,Center for Molecular Microbiology, University of Florida, College of Dentistry, Gainesville, FL 32610, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Yashmin S, Pandey A, Sabir SA. Vibrations in orthodontics: Is it the future? INTERNATIONAL JOURNAL OF ORTHODONTIC REHABILITATION 2019. [DOI: 10.4103/ijor.ijor_24_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Papadopoulou A, Iliadi A, Eliades T, Kletsas D. Early responses of human periodontal ligament fibroblasts to cyclic and static mechanical stretching. Eur J Orthod 2018; 39:258-263. [PMID: 27932408 DOI: 10.1093/ejo/cjw075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objective To compare the mechanotransduction caused by cyclic and static mechanical strains in human periodontal ligament fibroblasts (hPDLFs) cultured under identical conditions. Materials and methods hPDLFs, originating from the same donors, were exposed either to cyclic or to static tensile strain using specially designed devices and under identical culture conditions. Activation of all members of mitogen-activated protein kinases (MAPKs) was monitored by western immunoblot analysis. Expression levels of immediate/early genes c-fos and c-jun were assessed with quantitative real-time polymerase chain reaction. Results Time course experiments revealed that both types of stresses activate the three members of MAPK, that is ERK, p38, and JNK, with cyclic stress exhibiting a slightly more extended activation. Further downstream, both stresses upregulate the immediate/early genes c-fos and c-jun, encoding components of the activator protein-1 (AP-1), a key transcription factor in osteoblastic differentiation; again cyclic strain provokes a more intense upregulation. Six hours after the application of both strains, MAPK activation and gene expression return to basal levels. Finally, cells exposed to cyclic stress for longer periods are distributed approximately perpendicular to the axis of the applied strain, whereas cells exposed to static loading remain in a random orientation in culture. Conclusion The findings of the present study indicate similar, although not identical, immediate/early responses of hPDLs to cyclic and static stretching, with cyclic strain provoking a more intense adaptive response of these cells to mechanical deformation.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens
| | - Anna Iliadi
- Department of Orthodontics, School of Dentistry, University of Athens, Greece
| | - Theodore Eliades
- Clinic of Orthodontics and Paediatric Dentistry, University of Zurich, Switzerland
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens
| |
Collapse
|
13
|
Qin J, Hua Y. Effects of hydrogen sulfide on the expression of alkaline phosphatase, osteocalcin and collagen type I in human periodontal ligament cells induced by tension force stimulation. Mol Med Rep 2016; 14:3871-7. [DOI: 10.3892/mmr.2016.5680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 08/02/2016] [Indexed: 11/05/2022] Open
|
14
|
Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016; 7:2041731415618342. [PMID: 26977284 PMCID: PMC4765821 DOI: 10.1177/2041731415618342] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jung-Ju Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Mark P Lewis
- Musculo-Skeletal Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea
| |
Collapse
|
15
|
Hasegawa D, Wada N, Maeda H, Yoshida S, Mitarai H, Tomokiyo A, Monnouchi S, Hamano S, Yuda A, Akamine A. Wnt5a Induces Collagen Production by Human Periodontal Ligament Cells Through TGFβ1-Mediated Upregulation of Periostin Expression. J Cell Physiol 2015; 230:2647-60. [DOI: 10.1002/jcp.24950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 01/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Daigaku Hasegawa
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Naohisa Wada
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Hidefumi Maeda
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Shinichiro Yoshida
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Hiromi Mitarai
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Atsushi Tomokiyo
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Satoshi Monnouchi
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Sayuri Hamano
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Asuka Yuda
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Akifumi Akamine
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| |
Collapse
|
16
|
Konstantonis D, Papadopoulou A, Makou M, Eliades T, Basdra E, Kletsas D. The role of cellular senescence on the cyclic stretching-mediated activation of MAPK and ALP expression and activity in human periodontal ligament fibroblasts. Exp Gerontol 2014; 57:175-80. [DOI: 10.1016/j.exger.2014.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 11/26/2022]
|
17
|
Pavasant P, Yongchaitrakul T. Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000 2011; 56:154-65. [PMID: 21501242 DOI: 10.1111/j.1600-0757.2010.00374.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Monnouchi S, Maeda H, Fujii S, Tomokiyo A, Kono K, Akamine A. The Roles of Angiotensin II in Stretched Periodontal Ligament Cells. J Dent Res 2011; 90:181-5. [DOI: 10.1177/0022034510382118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The loading caused by occlusion and mastication plays an important role in maintaining periodontal ligament (PDL) tissues. We hypothesized that a loading magnitude would be involved in the production of biological factors that function in the maintenance of PDL tissues. Here, we identified up-regulated gene expressions of transforming growth factor-β1 (TGF-β1), alkaline phosphatase (ALP), and angiotensinogen in human PDL fibroblastic cells (HPLFs) that were exposed to 8% stretch loading. Immunolocalization of angiotensin I/II (Ang I/II), which was converted from angiotensinogen, was detected in rat PDL tissues. HPLFs that were stimulated by Ang II also increased their gene expressions of TGF-β1 and ALP. Furthermore, the antagonist for Ang II type 2 receptor, rather than for type 1, significantly inhibited gene expressions induced by the stretch loading. Analysis of these data suggests that Ang II mediates the loading signal in stretched HPLFs to induce expressions of TGF-β1 and ALP.
Collapse
Affiliation(s)
- S. Monnouchi
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - H. Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - S. Fujii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - A. Tomokiyo
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - K. Kono
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - A. Akamine
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Mitsuhashi M, Yamaguchi M, Kojima T, Nakajima R, Kasai K. Effects of HSP70 on the compression force-induced TNF-α and RANKL expression in human periodontal ligament cells. Inflamm Res 2010; 60:187-94. [DOI: 10.1007/s00011-010-0253-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Fujihara C, Yamada S, Ozaki N, Takeshita N, Kawaki H, Takano-Yamamoto T, Murakami S. Role of mechanical stress-induced glutamate signaling-associated molecules in cytodifferentiation of periodontal ligament cells. J Biol Chem 2010; 285:28286-97. [PMID: 20576613 DOI: 10.1074/jbc.m109.097303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we analyzed the effects of tensile mechanical stress on the gene expression profile of in vitro-maintained human periodontal ligament (PDL) cells. A DNA chip analysis identified 17 up-regulated genes in human PDL cells under the mechanical stress, including HOMER1 (homer homolog 1) and GRIN3A (glutamate receptor ionotropic N-methyl-d-aspartate 3A), which are related to glutamate signaling. RT-PCR and real-time PCR analyses revealed that human PDL cells constitutively expressed glutamate signaling-associated genes and that mechanical stress increased the expression of these mRNAs, leading to release of glutamate from human PDL cells and intracellular glutamate signal transduction. Interestingly, exogenous glutamate increased the mRNAs of cytodifferentiation and mineralization-related genes as well as the ALP (alkaline phosphatase) activities during the cytodifferentiation of the PDL cells. On the other hand, the glutamate signaling inhibitors riluzole and (+)-MK801 maleate suppressed the alkaline phosphatase activities and mineralized nodule formation during the cytodifferentiation and mineralization. Riluzole inhibited the mechanical stress-induced glutamate signaling-associated gene expressions in human PDL cells. Moreover, in situ hybridization analyses showed up-regulation of glutamate signaling-associated gene expressions at tension sites in the PDL under orthodontic tooth movement in a mouse model. The present data demonstrate that the glutamate signaling induced by mechanical stress positively regulates the cytodifferentiation and mineralization of PDL cells.
Collapse
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:911-20. [PMID: 19339214 DOI: 10.1016/j.bbamcr.2009.01.012] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 12/22/2022]
Abstract
Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.
Collapse
Affiliation(s)
- Matthias Chiquet
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Zhao Y, Wang C, Li S, Song H, Wei F, Pan K, Zhu K, Yang P, Tu Q, Chen J. Expression of Osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitro. Eur J Oral Sci 2008; 116:199-206. [PMID: 18471237 DOI: 10.1111/j.1600-0722.2008.00533.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for the differentiation of pre-osteoblasts into functional osteoblasts. This study sought to examine the changes of Osx expression in periodontal ligament cells (PDLC) subjected to mechanical force, and to investigate whether Osx is involved in the mechanical stress-induced differentiation of PDLC. Human PDLC were exposed to centrifugal force for 1-12 h. Real-time polymerase chain reaction (PCR), western blot, and immunofluorescence assays were used to examine the mRNA and protein expression of Osx and its subcellular localization. Furthermore, PDLC were transfected with the expression vector pcDNA3.1 flag-Osx and subjected to mechanical force for 6 h. The changes in alkaline phosphatase (ALP) activity and in the expression of core-binding factor alpha1 (Cbfa1), ALP, osteopontin, bone sialoprotein, osteocalcin, and collagen I were measured. After the application of mechanical force, Osx was upregulated in a time-dependent manner at both mRNA and protein levels, and Osx protein was translocated from the cytosol into the cell nuclei. Overexpression of Osx did not affect the expression of Cbfa1, but it significantly enhanced the ALP activity and the mRNA expression of all the aforementioned osteogenic marker genes, all of which increased further under mechanical stress. These results suggest that Osx might play an important role in the mechanical stress-induced osteogenic differentiation of PDLC and therefore be involved in alveolar bone remodeling during orthodontic therapy.
Collapse
Affiliation(s)
- Yanhong Zhao
- School of Stomatology, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 2008; 133:572-83. [PMID: 18405822 DOI: 10.1016/j.ajodo.2006.01.046] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 01/11/2006] [Accepted: 01/27/2006] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Accelerating the speed of orthodontic tooth movement should contribute to the shortening of the treatment period. This would be beneficial because long treatment times are a negative aspect of orthodontic treatment. In this study, we evaluated the effects of mechanical stimulation by resonance vibration on tooth movement, and we showed the cellular and molecular mechanisms of periodontal ligament responses. METHODS The maxillary first molars of 6-week-old male Wistar rats were moved to the buccal side by using an expansive spring for 21 days (n = 6, control group), and the amount of tooth movement was measured. Additional vibrational stimulation (60 Hz, 1.0 m/s(2)) was applied to the first molars by using a loading vibration system for 8 minutes on days 0, 7, and 14 during orthodontic tooth movement (n = 6, experimental group). The animals were killed under anesthesia, and each maxilla was dissected. The specimens were fixed, decalcified, and embedded in paraffin. Sections were used for immunohistochemical analysis of receptor activator of NF kappa B ligand (RANKL) expression. The number of osteoclasts in the alveolar bone was counted by using TRAP staining, and the amount of root resorption was measured in sections stained with hematoxylin and eosin. RESULTS The average resonance frequency of the maxillary first molar was 61.02 +/- 8.38 Hz. Tooth movement in the experimental group was significantly greater than in the control group (P <.05). Enhanced RANKL expression was observed at fibroblasts and osteoclasts in the periodontal ligament of the experimental group on day 3. The number of osteoclasts in the experimental group was significantly increased over the control group on day 8 (P <.05). Histologically, there were no pathological findings in either group or significant differences in the amount of root resorption between the 2 groups. CONCLUSIONS The application of resonance vibration might accelerate orthodontic tooth movement via enhanced RANKL expression in the periodontal ligament without additional damage to periodontal tissues such as root resorption.
Collapse
|
24
|
Maier S, Lutz R, Gelman L, Sarasa-Renedo A, Schenk S, Grashoff C, Chiquet M. Tenascin-C induction by cyclic strain requires integrin-linked kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1150-62. [PMID: 18269918 DOI: 10.1016/j.bbamcr.2008.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/15/2022]
Abstract
Induction of tenascin-C mRNA by cyclic strain in fibroblasts depends on RhoA and Rho dependent kinase (ROCK). Here we show that integrin-linked kinase (ILK) is required upstream of this pathway. In ILK-deficient fibroblasts, RhoA was not activated and tenascin-C mRNA remained low after cyclic strain; tenascin-C expression was unaffected by ROCK inhibition. In ILK wild-type but not ILK-/- fibroblasts, cyclic strain-induced reorganization of actin stress fibers and focal adhesions, as well as nuclear translocation of MAL, a transcriptional co-activator that links actin assembly to gene expression. These findings support a role for RhoA in ILK-mediated mechanotransduction. Rescue of ILK -/- fibroblasts by expression of wild-type ILK restored these responses to cyclic strain. Mechanosensation is not entirely abolished in ILK -/- fibroblasts, since cyclic strain activated Erk-1/2 and PKB/Akt, and induced c-fos mRNA in these cells. Conversely, lysophosphatidic acid stimulated RhoA and induced both c-fos and tenascin-C mRNA in ILK -/- cells. Thus, the signaling pathways controlling tenascin-C expression are functional in the absence of ILK, but are not triggered by cyclic strain. Our results indicate that ILK is selectively required for the induction of specific genes by mechanical stimulation via RhoA-mediated pathways.
Collapse
Affiliation(s)
- Silke Maier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Wei F, Wang C, Zhou G, Liu D, Zhang X, Zhao Y, Zhang Y, Yang Q. The effect of centrifugal force on the mRNA and protein levels of ATF4 in cultured human periodontal ligament fibroblasts. Arch Oral Biol 2008; 53:35-43. [PMID: 17826733 DOI: 10.1016/j.archoralbio.2007.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 06/11/2007] [Accepted: 07/27/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to examine the changes of ATF4 expression in cultured human periodontal ligament fibroblasts (hPDLF) after mechanical stimuli, and to investigate whether ATF4 is essential for the mechanical stress-induced hPDLF differentiation. METHODS Reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression in hPDLFs after application of centrifugal force. pMyc-ATF4 transfected cells were subjected to centrifugal force for 30min, and the changes of alkaline phosphatase (ALP) activity and osteocalcin (OCN), osteopontin (OPN), collagen I (COLI), bone sialoprotein (BSP) genes were measured to assess the differentiation of hPDLFs. RESULTS The mRNA and protein levels of ATF4 increased shortly and then decreased rapidly towards its pre-pressure levels. Overexpression of pMyc-ATF4 exhibited a greater increase in ALP activity and all four osteogenic genes compared to the untransfected cells in response to the centrifugal force. CONCLUSION Our results indicate that ATF4 is essential in response of hPDLFs to mechanical stress, resulting in increased differentiation of hPDLFs to osteoblast-like cells.
Collapse
Affiliation(s)
- Fulan Wei
- Department of Orthodontics, Shandong University, Shandong Province, Jinan 250012, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nagai N, Mori K, Satoh Y, Takahashi N, Yunoki S, Tajima K, Munekata M. In vitro growth and differentiated activities of human periodontal ligament fibroblasts cultured on salmon collagen gel. J Biomed Mater Res A 2007; 82:395-402. [PMID: 17295232 DOI: 10.1002/jbm.a.31110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Marine-derived collagen is expected to be a much safer alternative to calf collagen, which in medical applications carries the risk of bovine spongiform encephalopathy. In this study, acid-soluble collagen was extracted from salmon skin and crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide during fibril formation to produce a crosslinked salmon collagen (SC) gel. The growth rates and the differentiated functions of human periodontal ligament fibroblasts (HPdLFs) cultured on the SC gel were investigated. Growth was faster on the SC gel than on porcine collagen (PC) gel. In addition, the HPdLFs cultured on the SC gel exhibited higher alkaline phosphatase (ALP) activity than those cultured on the PC gel. Quantitative RT-PCR revealed higher mRNA expression of type I collagen, ALP, and osteocalcin in the HPdLFs cultured on the SC gel. HPdLFs had a flat shape on the SC gel and a spindle shape on the PC gel, as revealed by observation with scanning electron microscopy and immunostaining with cytoskeletal protein and vinculin. The results showed that HPdLFs could grow and show highly differentiated activity on the SC gel as well as on the PC gel.
Collapse
Affiliation(s)
- Nobuhiro Nagai
- Creative Research Initiative "Sousei" (CRIS), Hokkaido University, N21-W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene 2007; 391:1-15. [PMID: 17331678 PMCID: PMC2893340 DOI: 10.1016/j.gene.2007.01.014] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/08/2007] [Accepted: 01/15/2007] [Indexed: 12/11/2022]
Abstract
Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested.
Collapse
Affiliation(s)
- James H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, 210 Lothrop St., BST, E1640, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
28
|
Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 2006; 78:98-102. [PMID: 16467978 DOI: 10.1007/s00223-005-0146-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/18/2005] [Indexed: 12/24/2022]
Abstract
Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- C Morsczeck
- Stiftung Caesar, Center of Advanced European Studies and Research, Ludwig Erhard Allee 2, Bonn 53175, Germany.
| |
Collapse
|
29
|
Hashimoto K, Parker A, Malone P, Gabelt BT, Rasmussen C, Kaufman PS, Hernandez MR. Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro. Brain Res 2005; 1054:103-15. [PMID: 16081055 DOI: 10.1016/j.brainres.2005.06.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/30/2022]
Abstract
This study investigates whether the immediate early gene (IEG) products c-Fos and c-Jun are activated in vivo in monkeys with experimental glaucoma, and in vitro in cultured human ONH astrocytes exposed to hydrostatic pressure (HP). Three Rhesus monkeys with mild glaucomatous damage (mean intraocular pressure (IOP) 27 +/- 1.3 mm Hg approximately 42 weeks) and three with moderate glaucomatous damage (mean IOP 44 +/- 6.7% mm Hg approximately 11 weeks) were used for this study; the contralateral eye served as normal control (mean IOP 18.6 +/- 1.7 mm Hg). ONH tissues were stained with GFAP, DAPI, and c-Jun or c-Fos, and transcription factor positive and negative nuclei were counted to determine nuclear localization. Cultured human normal and glaucomatous ONH astrocytes exposed to elevated HP served as the in vitro model of elevated pressure. Activation and nuclear localization of c-Fos and c-Jun increased significantly in the monkeys with elevated IOP. These data correlated with axonal loss, reactive astrocytes, and remodeling of the optic disc. Cultured human ONH astrocytes showed increased nuclear localization of c-Fos and c-Jun under exposure to HP. Immunohistochemistry demonstrated that the upstream regulators of c-Fos and c-Jun, ERK-MAPK and MAPKp38 localized to the nuclei of ONH astrocytes in monkeys with experimental glaucoma. Taken together, these results demonstrate c-Fos and c-Jun activation in ONH astrocytes in vivo and in vitro, and that activation of both transcription factors is associated with ERK and MAPKp38 activation in experimental glaucoma, suggesting that activation of transcription factors may participate in the induction and maintenance of the reactive astrocyte phenotype in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Ophthalmology and Visual Science, Niigata University Graduate School, 1-757 Asahimachi, Niigata 951-8510, Japan
| | | | | | | | | | | | | |
Collapse
|