1
|
Guo Y, He M, Wang P, Bai D, Park JH, Dashnyam K, Lee JH, Huck O, Benkirane-Jessel N, Kim HW, Ramalingam M. A Combinatorial Approach to Regenerate the Periodontal Ligament and Cementum in a Nondental Microenvironment. J Tissue Eng Regen Med 2023; 2023:1277760. [PMID: 40226405 PMCID: PMC11919150 DOI: 10.1155/2023/1277760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 06/21/2023] [Indexed: 04/15/2025]
Abstract
While treated dentin matrix (TDM) has been used for regeneration of dental tissues, the quality and quantity of regenerated periodontal tissue structure are suboptimal. The present study was undertaken to test whether the combined use of the TDM with dental follicle cells (DFCs) and Hertwig's epithelial root sheath (HERS) cells enhances the regeneration of periodontal structures in a nondental microenvironment. TDMs were fabricated from 3-month-old Sprague-Dawley (SD) rats. DFCs and HERS cells were isolated from postnatal 7-day SD rats. Purified DFCs and HERS cells, both in combination or alone, were seeded and cultured on TDM in vitro and characterized. The cell-seeded TDMs were subsequently implanted into a 3-month-old rat greater omentum for 6 weeks, and further histological evaluation was performed. The results showed that cells grew well on the surface of TDMs, and mineralized nodules could be seen, especially in the HERS + DFCs group. After transplantation in rat omentum, periodontal ligament-like fibers and cementum-like structures were observed around the TDM in 1/3 of the samples in both the HERS group and the DFCs group and in 2/3 of the samples in the HERS + DFCs group, while almost no attached tissue formation was found in the TDM only group. The formed cementum width and the periodontal ligament length were significantly larger in the HERS + DFCs group. The periodontal ligament-like fibers in the HERS + DFCs group were orderly arranged and attached to the cementum-like tissues, which resembled the cementum-periodontal structure. Therefore, the combined use of DFCs, TDM, and HERS cells may be a promising strategy for the regeneration of the periodontal structures, especially in the nondental microenvironment.
Collapse
Affiliation(s)
- Yongwen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Lanzhou Stomatological Hospital, Lanzhou 730031, China
| | - Mengting He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Olivier Huck
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg 67084, France
| | - Nadia Benkirane-Jessel
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg 67084, France
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Murugan Ramalingam
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- Joint Research Laboratory on Advanced Pharma Development Initiative, A Joined Venture of TECNALIA and School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Madrid 28029, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
- Institute of Precision Medicine, Furtwangen University, 78054 Villingen-Schwenningen, Schwarzwald, Germany
| |
Collapse
|
2
|
Rodent incisor and molar dental follicles show distinct characteristics in tooth eruption. Arch Oral Biol 2021; 126:105117. [PMID: 33845260 DOI: 10.1016/j.archoralbio.2021.105117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Rodent incisors and molars show different eruption patterns. Dental follicles and their interaction with dental epithelia play key roles in tooth eruption. However, little is known about the differences between incisor dental follicle (IF) and molar dental follicle (MF) during tooth eruption of rodents. This study aimed to investigate the differences between IF and MF during tooth eruption under induction with cervical-loop cells (CLC) and Hertwig's epithelial root sheath (HERS) cells of rats. MATERIALS AND METHODS CLC, HERS, IF, MF cells were isolated from 10 postnatal day 7 rats and identified by immunofluorescence staining. CLC or HERS cells-derived conditioned medium (CM) was obtained to induce IF and MF cells. Cell proliferation, mineralization, gene and protein expression related to tooth eruption were detected, and histological analysis was also performed. RESULTS The osteogenic differentiation and mineralization abilities of IF cells were stronger than those of MF cells. Both CLC and HERS cells-derived CM enhanced these abilities of IF cells, whereas they showed the opposite effect on MF cells. At 7, 10, and 15 d after birth, IF cells expressed more OPG and less RANKL than MF cells. CONCLUSIONS IF and MF cells present distinct characteristics in tooth eruption, CLC and HERS cells have significant inductive effects on them.
Collapse
|
3
|
Guo Y, Guo W, Chen J, Chen G, Tian W, Bai D. Are Hertwig's epithelial root sheath cells necessary for periodontal formation by dental follicle cells? Arch Oral Biol 2018; 94:1-9. [PMID: 29929068 DOI: 10.1016/j.archoralbio.2018.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The role of Hertwig's epithelial root sheath (HERS) cells in periodontal formation has been controversial. This study aimed to further clarify whether HERS cells participate in formation of the periodontium, and the necessity of HERS cells in differentiation of dental follicle cells (DFCs) for periodontal regeneration. DESIGN HERS cells and DFCs were isolated and identified from post-natal 7-day Sprauge-Dawley rats. In vitro, direct co-culture of HERS cells and DFCs as well as the individual culture of HERS and DFCs were performed and followed by alizarin red staining and the quantitative real-time polymerase chain reaction analysis. For in vivo evaluation, the inactivated dentin matrix (iTDM) was fabricated. HERS cells and DFCs were seeded in combination or alone on iTDM and then transplanted into the rat omentum. Scanning electron microscope and further histological analysis were carried out. RESULTS In vitro, mineral-like nodules were found in the culture of HERS cells alone or HERS + DFCs either by alizarin red staining or scanning electronic microscope. The mineralization and fiber-forming relevant mRNA expressions, such as bone sialoprotein, osteopontin, collagen I and collagen III in HERS + DFCs were significantly higher than that of the HERS or DFCs alone group. After transplantation in vivo, cementum and periodontal ligament-like tissues were formed in groups of HERS + DFCs and HERS alone, while no evident hard tissues and attached fibers were found in DFCs alone. CONCLUSIONS Hertwig's epithelial root sheath cells directly participate in the formation of the periodontium, and they are essential for the differentiation of dental follicle cells to form periodontal structures. The combination use of Hertwig's epithelial root sheath cells and dental follicle cells is a promising approach for periodontal regeneration.
Collapse
Affiliation(s)
- Yongwen Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jie Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Francis ME, Uriel S, Brey EM. Endothelial Cell–Matrix Interactions in Neovascularization. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:19-32. [DOI: 10.1089/teb.2007.0115] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Megan E. Francis
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Research, Hines V.A. Hospital, Hines, Illinois
| | - Shiri Uriel
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Eric M. Brey
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Research, Hines V.A. Hospital, Hines, Illinois
| |
Collapse
|