1
|
Shah AR, Ahmad A, Srivastava S, Jaffar Ali B. Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
2
|
Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 2015; 5:3234. [PMID: 24492668 DOI: 10.1038/ncomms4234] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/10/2014] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae. The experimental expression of HYDA and the specific activity of hydrogenase demonstrate that C. vulgaris YSL01 and YSL16 enzymatically produce hydrogen, even under atmospheric conditions, which was previously considered infeasible. Photoautotrophic H2 production has important implications for assessing ecological and algae-based photolysis.
Collapse
|
3
|
Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 2010; 464:90-4. [PMID: 20173737 DOI: 10.1038/nature08786] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 11/08/2022]
Abstract
Nitrogen (N(2))-fixing marine cyanobacteria are an important source of fixed inorganic nitrogen that supports oceanic primary productivity and carbon dioxide removal from the atmosphere. A globally distributed, periodically abundant N(2)-fixing marine cyanobacterium, UCYN-A, was recently found to lack the oxygen-producing photosystem II complex of the photosynthetic apparatus, indicating a novel metabolism, but remains uncultivated. Here we show, from metabolic reconstructions inferred from the assembly of the complete UCYN-A genome using massively parallel pyrosequencing of paired-end reads, that UCYN-A has a photofermentative metabolism and is dependent on other organisms for essential compounds. We found that UCYN-A lacks a number of major metabolic pathways including the tricarboxylic acid cycle, but retains sufficient electron transport capacity to generate energy and reducing power from light. Unexpectedly, UCYN-A has a reduced genome (1.44 megabases) that is structurally similar to many chloroplasts and some bacteria, in that it contains inverted repeats of ribosomal RNA operons. The lack of biosynthetic pathways for several amino acids and purines suggests that this organism depends on other organisms, either in close association or in symbiosis, for critical nutrients. However, size fractionation experiments using natural populations have so far not provided evidence of a symbiotic association with another microorganism. The UCYN-A cyanobacterium is a paradox in evolution and adaptation to the marine environment, and is an example of the tight metabolic coupling between microorganisms in oligotrophic oceanic microbial communities.
Collapse
|
4
|
Melis A. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). PLANTA 2007; 226:1075-86. [PMID: 17721788 DOI: 10.1007/s00425-007-0609-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 07/27/2007] [Indexed: 05/16/2023]
Abstract
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
5
|
Berry S. Endosymbiosis and the design of eukaryotic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:57-72. [PMID: 14507427 DOI: 10.1016/s0005-2728(03)00084-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.
Collapse
Affiliation(s)
- Stephan Berry
- Plant Biochemistry, Faculty of Biology, Ruhr-University-Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
6
|
Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol Bioeng 2002; 78:731-40. [PMID: 12001165 DOI: 10.1002/bit.10254] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The green alga, Chlamydomonas reinhardtii, is capable of sustained H(2) photoproduction when grown under sulfur-deprived conditions. This phenomenon is a result of the partial deactivation of photosynthetic O(2)-evolution activity in response to sulfur deprivation. At these reduced rates of water-oxidation, oxidative respiration under continuous illumination can establish an anaerobic environment in the culture. After 10-15 hours of anaerobiosis, sulfur-deprived algal cells induce a reversible hydrogenase and start to evolve H(2) gas in the light. Using a computer-monitored photobioreactor system, we investigated the behavior of sulfur-deprived algae and found that: (1) the cultures transition through five consecutive phases: an aerobic phase, an O(2)-consumption phase, an anaerobic phase, a H(2)-production phase and a termination phase; (2) synchronization of cell division during pre-growth with 14:10 h light:dark cycles leads to earlier establishment of anaerobiosis in the cultures and to earlier onset of the H(2)-production phase; (3) re-addition of small quantities of sulfate (12.5-50 microM MgSO(4), final concentration) to either synchronized or unsynchronized cell suspensions results in an initial increase in culture density, a higher initial specific rate of H(2) production, an increase in the length of the H(2)-production phase, and an increase in the total amount of H(2) produced; and (4) increases in the culture optical density in the presence of 50 microM sulfate result in a decrease in the initial specific rates of H(2) production and in an earlier start of the H(2)-production phase with unsynchronized cells. We suggest that the effects of sulfur re-addition on H(2) production, up to an optimal concentration, are due to an increase in the residual water-oxidation activity of the algal cells. We also demonstrate that, in principle, cells synchronized by growth under light:dark cycles can be used in an outdoor H(2)-production system without loss of efficiency compared to cultures that up until now have been pre-grown under continuous light conditions.
Collapse
Affiliation(s)
- Sergey Kosourov
- Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | | | | | | |
Collapse
|
7
|
Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 2002; 66:1-20, table of contents. [PMID: 11875125 PMCID: PMC120778 DOI: 10.1128/mmbr.66.1.1-20.2002] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect--the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included.
Collapse
Affiliation(s)
- Paula Tamagnini
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Rikard Axelsson
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Pia Lindberg
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Fredrik Oxelfelt
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Röbbe Wünschiers
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Peter Lindblad
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
8
|
Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Tsygankov AA, Seibert M, Rubin AB. The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells. DOKL BIOCHEM BIOPHYS 2001; 381:371-4. [PMID: 11813546 DOI: 10.1023/a:1013315310173] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T K Antal
- Biological Faculty, Moscow State University, Vorob'evy gory, Moscow, 119899 Russia
| | | | | | | | | | | | | |
Collapse
|