1
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
2
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
3
|
Shinkarev VP. Flash-induced oxygen evolution in photosynthesis: simple solution for the extended S-state model that includes misses, double-hits, inactivation, and backward-transitions. Biophys J 2005; 88:412-21. [PMID: 15475587 PMCID: PMC1305018 DOI: 10.1529/biophysj.104.050898] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022] Open
Abstract
Flash-induced oxygen evolution in higher plants, algae, and cyanobacteria exhibits damped period-four oscillations. To explain such oscillations, Kok suggested a simple phenomenological S-state model, in which damping is due to empirical misses and double-hits. Here we developed an analytical solution for the extended Kok model that includes misses, double-hits, inactivation, and backward-transitions. The solution of the classic Kok model (with misses and double-hits only) can be obtained as a particular case of this solution. Simple equations describing the flash-number dependence of individual S-states and oxygen evolution in both cases are almost identical and, therefore, the classic Kok model does not have a significant advantage in its simplicity over the extended version considered in this article. Developed equations significantly simplify the fitting of experimental data via standard nonlinear regression analysis and make unnecessary the use of many previously developed methods for finding parameters of the model. The extended Kok model considered here can provide additional insight into the effect of dark relaxation between flashes and inactivation.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
4
|
Burda K, Bader KP, Schmid GH. 18O isotope effect in the photosynthetic water splitting process. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1557:77-82. [PMID: 12615350 DOI: 10.1016/s0005-2728(02)00395-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mass spectroscopic experiments of oxygen evolution in Photosystem II at 50% enrichment of H(2)18O, one expects equal signals of 18O(2) and 16O(2) unless one of the isotopes is favored by the oxygen evolving complex (OEC). We have observed a deviation from this expectation, being a clear indication of an isotope effect. We have measured the effect to be 1.14-1.30, which is higher than the theoretically predicted value of 1.014-1.06. This together with the strong temperature variation of the measured effect with a discontinuity at 11 degrees C observed for wild-type tobacco and at 9 degrees C for a yellow-green tobacco mutant suggest that an additional mechanism is responsible for the observed high isotope effect. The entry of a finite size of water clusters to the cleavage site of the OEC can explain the observation.
Collapse
Affiliation(s)
- Kvetoslava Burda
- Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342 Cracow, Poland
| | | | | |
Collapse
|
5
|
Burda K, Kruk J, Borgstädt R, Stanek J, Strzałka K, Schmid GH, Kruse O. Mössbauer studies of the non-heme iron and cytochrome b559 in a Chlamydomonas reinhardtii PSI- mutant and their interactions with alpha-tocopherol quinone. FEBS Lett 2003; 535:159-65. [PMID: 12560096 DOI: 10.1016/s0014-5793(02)03895-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spin and valence states of the non-heme iron and the heme iron of cytochrome b559, as well as their interactions with alpha-tocopherol quinone (alpha-TQ) in photosystem II (PSII) thylakoid membranes prepared from the Chlamydomonas reinhardtii PSI- mutant have been studied using Mössbauer spectroscopy. Both of the iron atoms are in low spin ferrous states. The Debye temperature of the non-heme is 194 K and of the heme iron is 182 K. The treatment of alpha-TQ does not change the spin and the valence states of the non-heme iron but enhances the covalence of its bonds. alpha-TQ oxidizes the heme iron into the high spin Fe3+ state. A possible role of the non-heme iron and alpha-TQ in electron flow through the PSII is discussed.
Collapse
Affiliation(s)
- Kvetoslava Burda
- Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342 Cracow, Poland
| | | | | | | | | | | | | |
Collapse
|
6
|
Hillier W, Hendry G, Burnap RL, Wydrzynski T. Substrate water exchange in photosystem II depends on the peripheral proteins. J Biol Chem 2001; 276:46917-24. [PMID: 11595731 DOI: 10.1074/jbc.m102954200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The (18)O exchange rates for the substrate water bound in the S(3) state were determined in different photosystem II sample types using time-resolved mass spectrometry. The samples included thylakoid membranes, salt-washed Triton X-100-prepared membrane fragments, and purified core complexes from spinach and cyanobacteria. For each sample type, two kinetically distinct isotopic exchange rates could be resolved, indicating that the biphasic exchange behavior for the substrate water is inherent to the O(2)-evolving catalytic site in the S(3) state. However, the fast phase of exchange became somewhat slower (by a factor of approximately 2) in NaCl-washed membrane fragments and core complexes from spinach in which the 16- and 23-kDa extrinsic proteins have been removed, compared with the corresponding rate for the intact samples. For CaCl(2)-washed membrane fragments in which the 33-kDa manganese stabilizing protein (MSP) has also been removed, the fast phase of exchange slowed down even further (by a factor of approximately 3). Interestingly, the slow phase of exchange was little affected in the samples from spinach. For core complexes prepared from Synechocystis PCC 6803 and Synechococcus elongatus, the fast and slow exchange rates were variously affected. Nevertheless, within the experimental error, nearly the same exchange rates were measured for thylakoid samples made from wild type and an MSP-lacking mutant of Synechocystis PCC 6803. This result could indicate that the MSP has a slightly different function in eukaryotic organisms compared with prokaryotic organisms. In all samples, however, the differences in the exchange rates are relatively small. Such small differences are unlikely to arise from major changes in the metal-ligand structure at the catalytic site. Rather, the observed differences may reflect subtle long range effects in which the exchange reaction coordinates become slightly altered. We discuss the results in terms of solvent penetration into photosystem II and the regional dielectric around the catalytic site.
Collapse
Affiliation(s)
- W Hillier
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|