1
|
Kim Y, Alia A, Kurle-Tucholski P, Wiebeler C, Matysik J. Electronic Structures of Radical-Pair-Forming Cofactors in a Heliobacterial Reaction Center. Molecules 2024; 29:1021. [PMID: 38474533 DOI: 10.3390/molecules29051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of 13C and 15N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
2
|
Tanaka M, Tanaka A, Saga Y. Effects of peripheral substituents on epimerization kinetics of formylated chlorophylls. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C132-[Formula: see text]-epimers of chlorophyll (Chl) molecules are important cofactors in the photosystem I reaction centers in oxygenic photosynthetic organisms; however, their production mechanism is still unclear. The reaction properties of Chl epimerization are helpful for a better understanding of the molecular mechanism of the in vivo formation of Chl C132-[Formula: see text]-epimers. We report herein the kinetic properties of the epimerization of formylated Chl molecules, Chl [Formula: see text] and Chl [Formula: see text], by use of triethylamine. Both Chl [Formula: see text] and Chl [Formula: see text] performed faster epimerization kinetics than Chl [Formula: see text], indicating that the electron-withdrawing ability of the formyl groups directly linked to the chlorin macrocycle is responsible for acceleration of the epimerization. Comparing the rate constants of the two mono-formylated Chl molecules indicated that the epimerization of Chl [Formula: see text] was faster than that of Chl [Formula: see text]. This difference is rationalized by invoking a combination of the inductive effects of the C3- and C7-substituents in Chls; the sums of Hammett [Formula: see text] parameters of the C3- and C7-substituents exhibited high correlations with the epimerization rate constants of Chls [Formula: see text], [Formula: see text], and [Formula: see text].
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
3
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
4
|
Energy transfer and primary charge separation upon selective femtosecond excitation at 810 nm in the reaction center complex from Heliobacterium modesticaldum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Saga Y, Nakagawa S. Structural effects on epimerization of bacteriochlorophyll a and chlorophyll a revealed using 3-acetyl chlorophyll a. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chlorophyll (Chl) and bacteriochlorophyll (BChl) pigments, which are crucial cyclic tetrapyrroles in photosynthesis, generally have a chiral center in their exo-cyclic five-membered E-ring. Although [Formula: see text]-epimers (primed-type) of (B)Chl pigments are rarely present in photosynthetic organisms, they play key roles in photosynthetic reaction center complexes. The epimerization mechanism of (B)Chl pigments in vivo has not been unraveled. The structural effects on the physicochemical properties of (B)Chl epimerization reactions provide useful information to tackle this question. We analyzed epimerization of three pigments, BChl [Formula: see text], Chl [Formula: see text], and 3-acetyl Chl [Formula: see text], to elucidate the structural factors that are responsible for epimerization reactions. We compared the epimerization kinetics of the three pigments and concluded that the bacteriochlorin skeleton (7,8,17,18-tetrahydroporphyrin) significantly retarded the epimerization kinetics. Thus, BChl [Formula: see text] exhibited slower epimerization kinetics than Chl [Formula: see text] in spite of the presence of the electron-withdrawing 3-acetyl group that accelerates epimerization. In contrast to the large structural effects of (B)Chl molecules on epimerization kinetics, the thermodynamic properties at equilibrium in the epimerization of the three pigments were barely influenced by their molecular structures. This study also demonstrates that a semi-synthetic pigment, 3-acetyl Chl [Formula: see text], is appropriate for comparative analyses of the structural effects of BChl [Formula: see text] and Chl [Formula: see text] on their physicochemical properties.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shiori Nakagawa
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
7
|
Dewey ED, Stokes LM, Burchell BM, Shaffer KN, Huntington AM, Baker JM, Nadendla S, Giglio MG, Bender KS, Touchman JW, Blankenship RE, Madigan MT, Sattley WM. Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis convoluta Strain HH T. Microorganisms 2020; 8:E313. [PMID: 32106460 PMCID: PMC7143216 DOI: 10.3390/microorganisms8030313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.
Collapse
Affiliation(s)
- Emma D. Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Lynn M. Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Brad M. Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Kathryn N. Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Austin M. Huntington
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Jennifer M. Baker
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Suvarna Nadendla
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.N.); (M.G.G.)
| | - Michelle G. Giglio
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.N.); (M.G.G.)
| | - Kelly S. Bender
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.)
| | | | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University in Saint Louis, St. Louis, MO 63130, USA;
| | - Michael T. Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.)
| | - W. Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| |
Collapse
|
8
|
Ortega-Ramos M, Canniffe DP, Radle MI, Neil Hunter C, Bryant DA, Golbeck JH. Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:501-509. [PMID: 29496394 DOI: 10.1016/j.bbabio.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023]
Abstract
Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl gF, where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl bP, where P is phytyl, rather than the native BChl aP, we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl gP. Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchGRs gene from Rba. sphaeroides was replaced with bchGHm from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl gF. The construction of a strain producing BChl gF validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl gF.
Collapse
Affiliation(s)
- Marcia Ortega-Ramos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew I Radle
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Kondo T, Matsuoka M, Azai C, Kobayashi M, Itoh S, Oh-oka H. Light-Induced Electron Spin-Polarized (ESP) EPR Signal of the P800+ Menaquinone– Radical Pair State in Oriented Membranes of Heliobacterium modesticaldum: Role/Location of Menaquinone in the Homodimeric Type I Reaction Center. J Phys Chem B 2018; 122:2536-2543. [DOI: 10.1021/acs.jpcb.7b12171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toru Kondo
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Masahiro Matsuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Chihiro Azai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masami Kobayashi
- Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Sinnecker S, Lubitz W. Probing the Electronic Structure of Bacteriochlorophyll Radical Ions-A Theoretical Study of the Effect of Substituents on Hyperfine Parameters. Photochem Photobiol 2017; 93:755-761. [PMID: 28120345 DOI: 10.1111/php.12724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
In reaction centers (RCs) of photosynthesis, a light-induced charge separation takes place creating radical cations and anions of the participating cofactors. In photosynthetic bacteria, different bacteriochlorophylls (BChl) are involved in this process. Information about the electronic structure of the BChl radical cations and anions can be obtained by measuring the electron spin density distribution via the electron-nuclear hyperfine interaction using EPR and ENDOR techniques. In this communication, we report isotropic hyperfine coupling constants (hfcs) of the BChl b and g radical cations and anions, calculated by density functional theory, and compare them with the more common radical ions of BChl a and with available experimental data. The observed differences in the computed hyperfine data are discussed in view of a possible distinction between these species by EPR/ENDOR methods. In addition, 14 N nuclear quadrupole coupling constants (nqcs) computed for BChl a, b, g, and also for Chl a in their charge neutral, radical cation and radical anion states are presented. These nqcs are compared with experimental values obtained by ESEEM spectroscopy on several different radical ions.
Collapse
Affiliation(s)
- Sebastian Sinnecker
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Ferlez B, Agostini A, Carbonera D, Golbeck JH, van der Est A. Triplet Charge Recombination in Heliobacterial Reaction Centers Does Not Produce a Spin-Polarized EPR Spectrum. Z PHYS CHEM 2016. [DOI: 10.1515/zpch-2016-0825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In photosynthetic reaction centers, reduction of the secondary acceptors leads to triplet charge recombination of the primary radical pair (RP). This process is spin selective and in a magnetic field it populates only the T0 state of the donor triplet state. As a result, the triplet state of the donor has a distinctive spin polarization pattern that can be measured by transient electron paramagnetic resonance (TREPR) spectroscopy. In heliobacterial reaction centers (HbRCs), the primary donor, P800, is composed of two bacteriochlorophyll g′ molecules and its triplet state has not been studied as extensively as those of other reaction centers. Here, we present TREPR and optically detected magnetic resonance (ODMR) data of 3P800 and show that although it can be detected by ODMR it is not observed in the TREPR data. We demonstrate that the absence of the TREPR spectrum is a result of the fact that the zero-field splitting (ZFS) tensor of 3P800 is maximally rhombic, which results in complete cancelation of the absorptive and emissive polarization in randomly oriented samples.
Collapse
Affiliation(s)
- Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alessandro Agostini
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
| | - Art van der Est
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
- Departments of Chemistry and Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|
12
|
Kondo T, Matsuoka M, Azai C, Itoh S, Oh-oka H. Orientations of Iron–Sulfur Clusters FA and FB in the Homodimeric Type-I Photosynthetic Reaction Center of Heliobacterium modesticaldum. J Phys Chem B 2016; 120:4204-12. [DOI: 10.1021/acs.jpcb.6b01112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toru Kondo
- Division
of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Masahiro Matsuoka
- Department
of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Chihiro Azai
- Department
of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Shigeru Itoh
- Center
for Gene Research, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Hirozo Oh-oka
- Department
of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
13
|
|
14
|
Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Surendran Thamarath S, Alia A, Roy E, Sai Sankar Gupta KB, Golbeck JH, Matysik J. The field-dependence of the solid-state photo-CIDNP effect in two states of heliobacterial reaction centers. PHOTOSYNTHESIS RESEARCH 2013; 117:461-9. [PMID: 23722589 DOI: 10.1007/s11120-013-9854-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/14/2013] [Indexed: 05/14/2023]
Abstract
The solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect is studied in photosynthetic reaction centers of Heliobacillus mobilis at different magnetic fields by (13)C MAS (magic-angle spinning) NMR spectroscopy. Two active states of heliobacterial reaction centers are probed: an anaerobic preparation of heliochromatophores ("Braunstoff", German for "brown substance") as well as a preparation of cells after exposure to oxygen ("Grünstoff", "green substance"). Braunstoff shows significant increase of enhanced absorptive (positive) signals toward lower magnetic fields, which is interpreted in terms of an enhanced differential relaxation (DR) mechanism. In Grünstoff, the signals remain emissive (negative) at two fields, confirming that the influence of the DR mechanism is comparably low.
Collapse
|
16
|
Tsukatani Y, Yamamoto H, Mizoguchi T, Fujita Y, Tamiaki H. Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: The C8-ethylidene group formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1200-4. [DOI: 10.1016/j.bbabio.2013.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
17
|
Chauvet A, Sarrou J, Lin S, Romberger SP, Golbeck JH, Savikhin S, Redding KE. Temporal and spectral characterization of the photosynthetic reaction center from Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2013; 116:1-9. [PMID: 23812833 DOI: 10.1007/s11120-013-9871-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
A time-resolved spectroscopic study of the isolated photosynthetic reaction center (RC) from Heliobacterium modesticaldum reveals that thermal equilibration of light excitation among the antenna pigments followed by trapping of excitation and the formation of the charge-separated state P800 (+)A0 (-) occurs within ~25 ps. This time scale is similar to that reported for plant and cyanobacterial photosystem I (PS I) complexes. Subsequent electron transfer from the primary electron acceptor A0 occurs with a lifetime of ~600 ps, suggesting that the RC of H. modesticaldum is functionally similar to that of Heliobacillus mobilis and Heliobacterium chlorum. The (A0 (-) - A0) and (P800 (+) - P800) absorption difference spectra imply that an 8(1)-OH-Chl a F molecule serves as the primary electron acceptor and occupies the position analogous to ec3 (A0) in PS I, while a monomeric BChl g pigment occupies the position analogous to ec2 (accessory Chl). The presence of an intense photobleaching band at 790 nm in the (A0 (-) - A0) spectrum suggests that the excitonic coupling between the monomeric accessory BChl g and the 8(1)-OH-Chl a F in the heliobacterial RC is significantly stronger than the excitonic coupling between the equivalent pigments in PS I.
Collapse
Affiliation(s)
- Adrien Chauvet
- Department of Physics, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Thamarath SS, Alia A, Daviso E, Mance D, Golbeck JH, Matysik J. Whole Cell Nuclear Magnetic Resonance Characterization of Two Photochemically Active States of the Photosynthetic Reaction Center in Heliobacteria. Biochemistry 2012; 51:5763-73. [DOI: 10.1021/bi300468y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - Eugenio Daviso
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - Deni Mance
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - John H. Golbeck
- Department
of Biochemistry and
Molecular Biology and Department of Chemistry, Pennsylvania State University, 328 South Frear Laboratory, University
Park, Pennsylvania 16802, United States
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| |
Collapse
|
19
|
Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 2012; 16:585-95. [DOI: 10.1007/s00792-012-0458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
20
|
Sarrou I, Khan Z, Cowgill J, Lin S, Brune D, Romberger S, Golbeck JH, Redding KE. Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2012; 111:291-302. [PMID: 22383054 DOI: 10.1007/s11120-012-9726-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
We have developed a purification protocol for photoactive reaction centers (HbRC) from Heliobacterium modesticaldum. HbRCs were purified from solubilized membranes in two sequential chromatographic steps, resulting in the isolation of a fraction containing a single polypeptide, which was identified as PshA by LC-MS/MS of tryptic peptides. All polypeptides reported earlier as unknown proteins (in Heinnickel et al., Biochemistry 45:6756-6764, 2006; Romberger et al., Photosynth Res 104:293-303, 2010) are now identified by mass spectrometry to be the membrane-bound cytochrome c (553) and four different ABC-type transporters. The purified PshA homodimer binds the following pigments: 20 bacteriochlorophyll (BChl) g, two BChl g', two 8(1)-OH-Chl a (F), and one 4,4'-diaponeurosporene. It lacks the PshB polypeptide binding the F(A) and F(B) [4Fe-4S] clusters. It is active in charge separation and exhibits a trapping time of 23 ps, as judged by time-resolved fluorescence studies. The charge recombination rate of the P(800) (+)F(X)(-) state is 10-15 ms, as seen before. The purified HbRC core was able to reduce cyanobacterial flavodoxin in the light, exhibiting a K (M) of 10 μM and a k (cat) of 9.5 s(-1) under near-saturating light. There are ~1.6 menaquinones per HbRC in the purified complex. Illumination of frozen HbRC in the presence of dithionite can cause creation of a radical at g = 2.0046, but this is not a semiquinone. Furthermore, we show that high-purity HbRCs are very stable in anoxic conditions and even remain active in the presence of oxygen under low light.
Collapse
Affiliation(s)
- Iosifina Sarrou
- Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., Tempe, AZ 85287-1604, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Romberger SP, Golbeck JH. The FX iron-sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers. PHOTOSYNTHESIS RESEARCH 2012; 111:285-290. [PMID: 22297911 DOI: 10.1007/s11120-012-9723-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
Phototrophs of the family Heliobacteriaceae contain the simplest known Type I reaction center (RC), consisting of a homodimeric (PshA)(2) core devoid of bound cytochromes and antenna proteins. Unlike plant and cyanobacterial Photosystem I in which the F(A)/F(B) protein, PsaC, is tightly bound to P(700)-F(X) cores, the RCs of Heliobacterium modesticaldum contain two F(A)/F(B) proteins, PshBI and PshBII, which are loosely bound to P(800)-F(X) cores. These two 2[4Fe-4S] ferredoxins have been proposed to function as mobile redox proteins, reducing downstream metabolic partners much in the same manner as does [2Fe-2S] ferredoxin or flavodoxin (Fld) in PS I. Using P(800)-F(X) cores devoid of PshBI and PshBII, we show that iron-sulfur cluster F(X) directly reduces Fld without the involvement of F(A) or F(B) (Fld is used as a proxy for soluble redox proteins even though a gene encoding Fld is not identified in the H. modesticaldum genome). The reduction of Fld is suppressed by the addition of PshBI or PshBII, an effect explained by competition for the electron on F(X). In contrast, P(700)-F(X) cores require the presence of the PsaC, and hence, the F(A)/F(B) clusters for Fld (or ferredoxin) reduction. Thus, in H. modesticaldum, the interpolypeptide F(X) cluster serves as the terminal bound electron acceptor. This finding implies that the homodimeric (PshA)(2) cores should be capable of donating electrons to a wide variety of yet-to-be characterized soluble redox partners.
Collapse
Affiliation(s)
- Steven P Romberger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
22
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Collins AM, Redding KE, Blankenship RE. Modulation of fluorescence in Heliobacterium modesticaldum cells. PHOTOSYNTHESIS RESEARCH 2010; 104:283-292. [PMID: 20461555 DOI: 10.1007/s11120-010-9554-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
In what appears to be a common theme for all phototrophs, heliobacteria exhibit complex modulations of fluorescence yield when illuminated with actinic light and probed on a time scale of micros to minutes. The fluorescence yield from cells of Heliobacterium modesticaldum remained nearly constant for the first 10-100 ms of illumination and then rose to a maximum level with one or two inflections over the course of many seconds. Fluorescence then declined to a steady-state value within about one minute. In this analysis, the origins of the fluorescence induction in whole cells of heliobacteria are investigated by treating cells with a combination of electron accepters, donors, and inhibitors of the photosynthetic electron transport, as well as varying the temperature. We conclude that fluorescence modulation in H. modesticaldum results from acceptor-side limitation in the reaction center (RC), possibly due to charge recombination between P(800) (+) and A(0) (-).
Collapse
Affiliation(s)
- Aaron M Collins
- Departments of Biology and Chemistry, Washington University in St. Louis, MO 63130, USA
| | | | | |
Collapse
|
24
|
Romberger SP, Castro C, Sun Y, Golbeck JH. Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2010; 104:293-303. [PMID: 20502966 DOI: 10.1007/s11120-010-9558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/29/2010] [Indexed: 05/29/2023]
Abstract
All known Type I photosynthetic reaction centers harbor three [4Fe-4S] clusters named F(X), F(A) and F(B) that function as terminal electron acceptors. We reported earlier that F(A) and F(B) in the homodimeric Type I reaction center from Heliobacterium modesticaldum reside on a loosely bound 54 amino acid protein named PshB. Time-resolved optical spectroscopy and low temperature EPR spectroscopy showed that on illumination, electrons were transferred from F(X) (-) to F(A) and F(B) at both cryogenic and room temperatures. Interestingly, the gene that codes for PshB, HM1_1462, is part of a predicted dicistronic operon that contains a second gene, named HM1_1461, which codes for a second ferredoxin-like protein with high sequence homology to PshB, including the two traditional [4Fe-4S] cluster binding motifs. RT-PCR results confirm that both genes are transcribed as a single transcript. We have cloned the HM1_1461 gene through PCR amplification of the H. modesticaldum chromosomal DNA and overexpressed the apoprotein in Escherichia coli. Reconstitution studies with inorganic reagents have shown that the holoprotein harbors ~8 iron and ~8 sulfide atoms in the form of two [4Fe-4S] clusters. Incubation of the reconstituted holoprotein with heliobacterial reaction center cores results in a charge-separated state characteristic of electron transfer past the F(X) cluster to the terminal [4Fe-4S] clusters F(A) and F(B). These results suggest that the HM1_1461 product, which we have named PshBII, is capable of functioning in lieu of PshB (renamed PshBI) as an alternative terminal electron transfer protein. Thus, unlike PS I, to which PsaC is tightly bound, two loosely bound ferredoxins, PshBI and PshBII, are capable of interacting with the heliobacterial reaction center. The presence of two, loosely bound F(A)/F(B) proteins represents a significant shift in our understanding of structure-function relationships in Type I reaction centers.
Collapse
Affiliation(s)
- Steven P Romberger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
25
|
Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M. An overview on chlorophylls and quinones in the photosystem I-type reaction centers. PHOTOSYNTHESIS RESEARCH 2010; 104:305-19. [PMID: 20165917 DOI: 10.1007/s11120-010-9530-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/16/2010] [Indexed: 05/08/2023]
Abstract
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a' in green sulfur bacteria, BChl g' in heliobacteria, Chl a' in Chl a-type PS I, and Chl d' in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a')(2) and (BChl g')(2) in anoxygenic organisms, or heterodimers, Chl a/a' and Chl d/d' in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A (0), are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M. Unique photosystems in Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 98:141-149. [PMID: 18985431 DOI: 10.1007/s11120-008-9383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
A short overview is given on the discovery of the chlorophyll d-dominated cyanobacterium Acaryochloris marina and the minor pigments that function as key components therein. In photosystem I, chlorophyll d', chlorophyll a, and phylloquinone function as the primary electron donor, the primary electron acceptor and the secondary electron acceptor, respectively. In photosystem II, pheophytin a serves as the primary electron acceptor. The oxidation potential of chlorophyll d was higher than that of chlorophyll a in vitro, while the oxidation potential of P740 was almost the same as that of P700. These results help us to broaden our view on the questions about the unique photosystems in Acaryochloris marina.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Roy E, Rohmer T, Gast P, Jeschke G, Alia A, Matysik J. Characterization of the Primary Radical Pair in Reaction Centers of Heliobacillus mobilis by 13C Photo-CIDNP MAS NMR. Biochemistry 2008; 47:4629-35. [DOI: 10.1021/bi800030g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Esha Roy
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Thierry Rohmer
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Peter Gast
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Gunnar Jeschke
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - A. Alia
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Jörg Matysik
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
28
|
Abstract
Secondary metabolites generally benefit their producers as poisons that protect them against competitors, predators or parasites. They are produced from universally present precursors (most often acetyl-CoA, amino acids or shikimate) by specific enzymes that probably arose by the duplication and divergence of genes originally coding for primary metabolism. Most secondary metabolites are restricted to single major taxa on the universal phylogenetic tree and so probably originated only once. But different secondary metabolic pathways have originated from different ancestral enzymes at radically different times in evolution. Secondary metabolites are most abundantly produced by microorganisms in crowded habitats and by plants, fungi and sessile animals like sponges, where chemical defence and attack rather than physical escape or fighting are at a premium. The first secondary metabolites were probably antibiotics produced in microbial mats over 3500 million years ago. These first ecosystems probably consisted entirely of eubacteria: archaebacteria and eukaryotes arose much later. As a phylogenetic context for considering the earliest origins of antibiotics I summarize a cladistic analysis of the explosive eubacterial primary diversification. This suggests that the most primitive surviving cells are the photosynthetic heliobacteria. Study of these and of the nearly as primitive chloroflexibacteria, spirochaetes and deinobacteria may provide the best evidence on the origins of secondary and primary metabolism.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Abstract
The reaction center (RC) of heliobacteria contains iron-sulfur centers as terminal electron acceptors, analogous to those of green sulfur bacteria as well as photosystem I in cyanobacteria and higher plants. Therefore, they all belong to the so-called type 1 RCs, in contrast to the type 2 RCs of purple bacteria and photosystem II containing quinone molecules. Although the architecture of the heliobacterial RC as a protein complex is still unknown, it forms a homodimer made up of two identical PshA core proteins, where two symmetrical electron transfer pathways along the C2 axis are assumed to be equally functional. Electrons are considered to be transferred from membrane-bound cytochrome c (PetJ) to a special pair P800, a chlorophyll a-like molecule A0, (a quinone molecule A1) and a [4Fe-4S] center Fx and, finally, to 2[4Fe-4S] centers FA/FB. No definite evidence has been obtained for the presence of functional quinone acceptor A1. An additional interesting point is that the electron transfer reaction from cytochrome c to P800 proceeds in a collisional mode. It is highly dependent on the temperature, ion strength and/or viscosity in a reaction medium, suggesting that a heme-binding moiety fluctuates in an aqueous phase with its amino-terminus anchored to membranes.
Collapse
Affiliation(s)
- Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
Mizoguchi T, Oh-oka H, Tamiaki H. Determination of Stereochemistry of Bacteriochlorophyll gF and 81-Hydroxy-chlorophyll aF from Heliobacterium modesticaldum¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00242.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Heinnickel M, Golbeck JH. Heliobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2007; 92:35-53. [PMID: 17457690 DOI: 10.1007/s11120-007-9162-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278-290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]- recombination, and the latter from P798+ FX- recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe-4S]1+,2+ cluster with a ground spin state of S=3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of approximately 22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]- recombination and the light-induced EPR resonances of FA- and FB-. The gene was named 'pshB' and the protein 'PshB' in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
32
|
Pröll S, Wilhelm B, Robert B, Scheer H. Myoglobin with modified tetrapyrrole chromophores: binding specificity and photochemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:750-63. [PMID: 16814742 DOI: 10.1016/j.bbabio.2006.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 03/02/2006] [Accepted: 03/28/2006] [Indexed: 11/19/2022]
Abstract
Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 13(2)-epimerase converting, e.g., Zn-pheophorbide a' (13(2)S) to a (13(2)R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark.
Collapse
|
33
|
Asao M, Jung DO, Achenbach LA, Madigan MT. Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 2006; 10:403-10. [PMID: 16628377 DOI: 10.1007/s00792-006-0513-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 01/06/2006] [Indexed: 11/27/2022]
Abstract
A morphologically distinct heliobacterium, strain HH, was isolated from Lake El Hamra, a soda lake in the Wadi El Natroun region of northwest Egypt. Strain HH consisted of ring-shaped cells that remained attached after cell division to yield coils of various lengths. Strain HH showed several of the physiological properties of known heliobacteria and grouped in the Heliorestis clade by virtue of its phylogeny and alkaliphily. The closest relative of strain HH was the filamentous alkaliphilic heliobacterium Heliorestis daurensis. However, genomic DNA:DNA hybridization results clearly indicated that strain HH was a distinct species of Heliorestis. Based on its unique phenotypic and genetic properties we describe strain HH here as a new species of the genus Heliorestis, H. convoluta sp. nov.
Collapse
Affiliation(s)
- Marie Asao
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
34
|
Mizoguchi T, Oh-oka H, Tamiaki H. Determination of Stereochemistry of Bacteriochlorophyll gF and 81-Hydroxy-chlorophyll aF from Heliobacterium modesticaldum¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-09-11-ra-315.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Hauska G, Schoedl T, Remigy H, Tsiotis G. The reaction center of green sulfur bacteria(1). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:260-77. [PMID: 11687219 DOI: 10.1016/s0005-2728(01)00200-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA-D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A(0), which is a Chl a-derivative and FeS-center F(X). An equivalent to the electron acceptor A(1) in Photosystem I, which is tightly bound phylloquinone acting between A(0) and F(X), is not required for forward electron transfer in the RC of green sulfur bacteria. This difference is reflected by different rates of electron transfer between A(0) and F(X) in the two systems. The subunit PscB contains the two FeS-centers F(A) and F(B). STEM particle analysis suggests that the core of the RC with PscA and PscB resembles the PsaAB/PsaC-core of the P700-reaction center in Photosystem I. PscB may form a protrusion into the cytoplasmic space where reduction of ferredoxin occurs, with FMO trimers bound on both sides of this protrusion. Thus the subunit composition of the RC in vivo should be 2(FMO)(3)(PscA)(2)PscB(PscC)(2)PscD. Only 16 BChl a-, four Chl a-molecules and two carotenoids are bound to the RC-core, which is substantially less than its counterpart of Photosystem I, with 85 Chl a-molecules and 22 carotenoids. A total of 58 BChl a/RC are present in the membranes of green sulfur bacteria outside the chlorosomes, corresponding to two trimers of FMO (42 Bchl a) per RC (16 BChl a). The question whether the homodimeric RC is totally symmetric is still open. Furthermore, it is still unclear which cytochrome c is the physiological electron donor to P840(+). Also the way of NAD(+)-reduction is unknown, since a gene equivalent to ferredoxin-NADP(+) reductase is not present in the genome.
Collapse
Affiliation(s)
- G Hauska
- Lehstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany.
| | | | | | | |
Collapse
|
36
|
Neerken S, Amesz J. The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:278-90. [PMID: 11687220 DOI: 10.1016/s0005-2728(01)00207-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A survey is given of various aspects of the photosynthetic processes in heliobacteria. The review mainly refers to results obtained since 1995, which had not been covered earlier. It first discusses the antenna organization and pigmentation. The pigments of heliobacteria include some unusual species: bacteriochlorophyll (BChl) g, the main pigment, 8(1) hydroxy chlorophyll a, which acts as primary electron acceptor, and 4,4'-diaponeurosporene, a carotenoid with 30 carbon atoms. Energy conversion within the antenna is very fast: at room temperature thermal equilibrium among the approx. 35 BChls g of the antenna is largely completed within a few ps. This is then followed by primary charge separation, involving a dimer of BChl g (P798) as donor, but recent evidence indicates that excitation of the acceptor pigment 8(1) hydroxy chlorophyll a gives rise to an alternative primary reaction not involving excited P798. The final section of the review concerns secondary electron transfer, an area that is relatively poorly known in heliobacteria.
Collapse
Affiliation(s)
- S Neerken
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.
| | | |
Collapse
|
37
|
Nakamura A, Watanabe T. Separation and determination of minor photosynthetic pigments by reversed-phase HPLC with minimal alteration of chlorophylls. ANAL SCI 2001; 17:503-8. [PMID: 11990566 DOI: 10.2116/analsci.17.503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reversed-phase HPLC conditions for separation of chlorophyll (Chl) a, Chl a' (the C132-epimer of Chl a), pheophytin (Pheo) a (the primary electron acceptor of photosystem (PS) II), and phylloquinone (PhQ) (the secondary electron acceptor of PS 1), have been developed. Pigment extraction conditions were optimized in terms of pigment alteration and extraction efficiency. Pigment composition analysis of light-harvesting complex II, which would not contain Chl a' nor Pheo a, showed the Chl a'/Chl a ratio of 3-4 x 10(-4) and the Pheo a/Chl a ratio of 4-5 x 10(-4), showing that the conditions developed here were sufficiently inert for Chl analysis. Preliminary analysis of thylakoid membranes with this analytical system gave the PhQ/Chl a' ratio of 0.58 +/- 0.03 (n = 4), in line with the stoichiometry of one molecule of Chl a' per PS I.
Collapse
Affiliation(s)
- A Nakamura
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Japan
| | | |
Collapse
|
38
|
Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Kobayashi M. Detection of chlorophyll d' and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. ANAL SCI 2001; 17:205-8. [PMID: 11993664 DOI: 10.2116/analsci.17.205] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M Akiyama
- Institute of Materials Science, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Ikegami I, Itoh S, Iwaki M. Selective extraction of antenna chlorophylls, carotenoids and quinones from photosystem I reaction center. PLANT & CELL PHYSIOLOGY 2000; 41:1085-1095. [PMID: 11148266 DOI: 10.1093/pcp/pcd033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
By the ether treatment of lyophilized PSI pigment-protein complexes, all the carotenoids and the secondary acceptor phylloquinone (A1), and more than 90% of the Chl were removed to yield the PSI complex with 9-11 molecules of Chl per reaction-center unit. The complexes retained the primary electron donor and acceptor (P700 and A0), in addition to three FeS clusters (F(X), F(A) and F(B)), and showed an activity of highly efficient electron transfer when phylloquinone was reconstituted. The methods for the preparation and the characterization of the ether-extracted PSI complexes are reviewed in this article. We also review the studies done with this PSI preparation on (1) the identification of the absorption and fluorescence spectra of P700, (2) the nano- and picosecond reaction of A0 and A1, (3) the energy-gap dependency of the reaction rate between A0 and the artificial quinones reconstituted at the A1 site, (4) the direct excitation of P700 followed by the ultra-fast electron transfer from P700 to A0, and (5) the de- and re-stabilization of the PSI structure by the removal and reconstitution, respectively, of antenna Chl in the presence of certain lipids.
Collapse
Affiliation(s)
- I Ikegami
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan.
| | | | | |
Collapse
|
40
|
Furukawa H, Oba T, Tamiaki H, Watanabe T. Effect of C132-Stereochemistry on the Molecular Properties of Chlorophylls. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2000. [DOI: 10.1246/bcsj.73.1341] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Vrieze J, van de Meent EJ, Hoff AJ. Triplet properties and interactions of the primary electron donor and antenna chromophores in membranes of Heliobacterium chlorum, studied with ADMR spectroscopy. Biochemistry 1998; 37:14900-9. [PMID: 9778366 DOI: 10.1021/bi981207w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The triplet states of antenna and reaction center bacteriochlorophyll (BChl) g in membranes of Heliobacterium chlorum were studied by optically detected magnetic resonance in zero magnetic field, using absorbance detection. A variety of triplet states was detected, which were all localized on single BChl g chromophores as concluded from a comparison with the triplet state of monomeric BChl g in organic solvents. With the aid of the microwave-induced absorbance difference spectra, we assign a triplet state with zero-field splitting parameters |D| = 727.5 and |E| = 254. 5 MHz to that of the primary donor. The low |E| value indicates that the BChls of the primary donor are monoligated. The intensities of the zero-field transitions were strongly dependent on the redox state of the secondary electron acceptors. A triplet state with |D| = 690-705 MHz and |E| =230 MHz, present under all redox conditions, is associated with antenna BChl g absorbing at 814 nm. Its triplet yield was independent of the redox conditions; we conclude therefore that the antenna chromophores absorbing at 814 nm are not connected with the reaction center at cryogenic temperatures (1.2 K). In addition, relatively strong signals were detected belonging to triplet states with |D| and |E| of 663-680 and 220-227 MHz, respectively, whose amplitudes were dependent on the redox conditions. Triplet states with these zero-field splitting parameters are located on antenna chromophores absorbing between 798-814 nm; their zero-field transitions and absorbance difference spectra indicate a considerable heterogeneity. The concentration of triplet states of antenna chromophores absorbing around 800 nm decreased markedly upon prolonged excitation at 1.2 K. This phenomenon is attributed to quenching of excitations on antenna pigments by stable charge separation in the closely connected reaction center, possibly involving a low-quantum yield menaquinone electron acceptor.
Collapse
Affiliation(s)
- J Vrieze
- Department of Biophysics, Huygens Laboratory, Leiden University, The Netherlands
| | | | | |
Collapse
|
42
|
Kobayashi N, Nevin WA. Optically Active Tetrapyrazinoporphyrazines and Their Circular Dichroism in Monomeric and Dimeric Forms. CHEM LETT 1998. [DOI: 10.1246/cl.1998.851] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-oka H, Amesz J, Yamamura M, Kise H. Light-independent isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00088-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Brettel K, Leibl W, Liebl U. Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:175-81. [PMID: 9518598 DOI: 10.1016/s0005-2728(98)00010-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane fragments from Heliobacillus mobilis were characterized using time resolved optical spectroscopy and photovoltage measurements in order to detect a possible participation of menaquinone (MQ), functioning analogous to the phylloquinone A1 in photosystem I, as intermediate in electron transfer from the primary acceptor A0 to the iron-sulfur cluster FX in the photosynthetic reaction center. The spectroscopic data obtained exclude that electron transfer from a semiquinone anion MQ- to FX occurred in the time window from 2 ns to 4 micros, where it would be expected in analogy to photosystem I. In the case of a prereduction of FX, only the primary pair P798+A0- was formed. The photovoltage data yielded a single kinetic phase with a time constant of 700 ps for the transmembrane electron transfer beyond A0; the relative amplitude of this phase suggests that it reflects electron transfer from A0- to FX.
Collapse
Affiliation(s)
- K Brettel
- Section de Bioénergétique, DBCM, CEA and CNRS URA 2096, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
45
|
Liebl U, Nitschke W, Mattioli TA. Pigment-Protein Interactions in the Antenna-Reaction Center Complex of Heliobacillus mobilis. Photochem Photobiol 1996. [DOI: 10.1111/j.1751-1097.1996.tb02419.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Storch KF, Cmiel E, Schäfer W, Scheer H. Stereoselectivity of pigment exchange with 13(2)-hydroxylated tetrapyrroles in reaction centers of Rhodobacter sphaeroides R26. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:280-6. [PMID: 8665948 DOI: 10.1111/j.1432-1033.1996.0280q.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacteriochlorophyll a and bacteriopheophytin a carry a stereochemically labile asymmetric carbon at position C13(2). The steric requirements of photosynthetic reaction centers from Rhodobacter sphaeroides R26 have been probed by exchange experiments with the respective epimeric 13(2)-hydroxylated pigments, in which epimerisation is blocked. (13(2)S)-13(2)-Hydroxy-bacteriochlorophyll a is accepted at both monomeric binding sites, BA,B, (13(2)S)-13(2)-hydroxy-bacteriopheophytin a exclusively at the inactive site HB. The orientation of the 13(2)-COOCH3 substituents in these pigments is the same as in the native (13(2)R)-bacteriochlorophylls and (13(2)R)-bacteriopheophytins. In no cases are the unnaturally configured 13(2)-hydroxylated (13(2)R)-epimers accepted, even if a large excess (> 95%) is offered. It is concluded that the three binding sites always require the 13(2)-COOCH3 group on the opposite side of the macrocycle (down) than the 17-propionic ester side chain (up).
Collapse
Affiliation(s)
- K F Storch
- Botanisches Institut, Universität München, Germany
| | | | | | | |
Collapse
|
47
|
Oba T, Watanabe T, Mimuro M, Kobayashi M, Yoshida S. Aggregation of Chlorophyll a' in Aqueous Methanol. Photochem Photobiol 1996. [DOI: 10.1111/j.1751-1097.1996.tb05668.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Francke C, Amesz J. The size of the photosynthetic unit in purple bacteria. PHOTOSYNTHESIS RESEARCH 1995; 46:347-352. [PMID: 24301602 DOI: 10.1007/bf00020450] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/1995] [Accepted: 05/02/1995] [Indexed: 06/02/2023]
Abstract
Pigment analysis was performed by means of normal phase HPLC on a number of bacteriochlorophyll a and b containing species of purple bacteria that contain a core antenna only. At least 99% of the bacteriochlorophyll in Rhodobacter sphaeroides R26, Rhodopseudomonas viridis and Thiocapsa pfennigii was esterified with phytol (BChl a p and BChl b p, respectively). Rhodospirillum rubrum contained only BChl a esterified with geranyl-geraniol (BChl a GG). Rhodospirillum sodomense and Rhodopseudomonas marina contained, in addition to BChl a p, small amounts of BChl a GG, and presumably also of BChl a esterified with dihydro and tetrahydro geranyl-geraniol (Δ2,10,14-phytatrienol and probably Δ2,14-phytadienol). In all species bacteriopheophytin (BPhe) esterified with phytol was present. The BChl/BPhe ratio indicated that in these species a constant number of 25 ± 3 antenna BChls is present per reaction centre. This number supports a model in which the core antenna consists of 12 α-β heterodimers surrounding the reaction centre. Determination of the in vivo extinction coefficient of BChl in the core-reaction centre complex yielded a value of ca. 140 mM(-1) cm(-1) for BChl a containing species and of 130 mM(-1) cm(-1) for Rhodopseudomonas viridis.
Collapse
Affiliation(s)
- C Francke
- Department of Biophysics, Huygens Laboratory, University of Leiden, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
49
|
Amesz J. The heliobacteria, a new group of photosynthetic bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1995. [DOI: 10.1016/1011-1344(95)07207-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Vrieze J, Hoff A. The orientation of the triplet axes with respect to the optical transition moments in (bacterio) chlorophylls. Chem Phys Lett 1995. [DOI: 10.1016/0009-2614(95)00354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|