1
|
Dharmasivam M, Azad MG, Afroz R, Richardson V, Jansson PJ, Richardson DR. The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochim Biophys Acta Gen Subj 2022; 1866:130152. [DOI: 10.1016/j.bbagen.2022.130152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
|
2
|
Sohtun WP, Khamrang T, Kannan A, Balakrishnan G, Saravanan D, Akhbarsha MA, Velusamy M, Palaniandavar M. Iron(III) bis‐complexes of Schiff bases of
S
‐methyldithiocarbazates: Synthesis, structure, spectral and redox properties and cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Winaki P. Sohtun
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
| | - Themmila Khamrang
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
- Present Address: C. I. College, Bishnupur Manipur 795126 India
| | | | - Gowdhami Balakrishnan
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620024 India
| | | | - Mohammad Abdulkader Akhbarsha
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620024 India
| | - Marappan Velusamy
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
| | | |
Collapse
|
3
|
Jansová H, Šimůnek T. Cardioprotective Potential of Iron Chelators and Prochelators. Curr Med Chem 2019; 26:288-301. [DOI: 10.2174/0929867324666170920155439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Heart is a particularly sensitive organ to iron overload and cardiomyopathy due to the excessive cardiac iron deposition causes most deaths in disorders such as beta-thalassemia major. Free or loosely bound iron ions readily cycle between ferrous and ferric states and catalyze Haber-Weiss reaction that yields highly reactive and toxic hydroxyl radicals. Treatment with iron chelators (desferrioxamine, deferiprone, and deferasirox) substantially improved cardiovascular morbidity and mortality in iron overloaded patients. Furthermore, iron chelators have been studied in various cardiovascular disorders with known or presumed oxidative stress roles (e.g., ischemia/reperfusion injury) also in patients with normal body iron contents. The pharmacodynamic and pharmacokinetic properties of these chelators are critical for effective therapy. For example, the widely clinically used but hydrophilic chelator desferrioxamine suffers from poor plasma membrane permeability, which means that high and clinically unachievable concentrations/doses must be employed to obtain cardioprotection. Therefore, small-molecular and lipophilic chelators with oral availability are more suitable for this purpose, particularly in states without systemic iron overload. Apart from agents that are already used in clinical practice, aroylhydrazone iron chelators, namely salicylaldehyde isonicotinoyl hydrazone (SIH), have provided promising results. However, the use of classical iron-chelating agents is associated with a risk of toxicity due to indiscriminate iron depletion. Recent studies have therefore focused on "masked" prochelators that have little or no affinity for iron until site-specific activation by reactive oxygen species.
Collapse
Affiliation(s)
- Hana Jansová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Prague, Czech Republic
| | - Tomáś Šimůnek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Merlot AM, Pantarat N, Menezes SV, Sahni S, Richardson DR, Kalinowski DS. Cellular uptake of the antitumor agent Dp44mT occurs via a carrier/receptor-mediated mechanism. Mol Pharmacol 2013; 84:911-24. [PMID: 24085840 DOI: 10.1124/mol.113.088393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) shows potent and selective anticancer and antimetastatic activity. However, the mechanism by which it is initially transported into cells to induce cytotoxicity is unknown. Hence, the current investigation examined the cellular uptake of ¹⁴C-Dp44mT relative to two structurally related ligands, namely the aroylhydrazone ¹⁴C-pyridoxal isonicotinoyl hydrazone (¹⁴C-PIH) and the thiosemicarbazone (¹⁴C-2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (¹⁴C-Bp4eT). In marked contrast to the cellular uptake of ¹⁴C-PIH and ¹⁴C-Bp4eT, which were linear as a function of concentration, ¹⁴C-Dp44mT uptake was saturable using SK-N-MC neuroepithelioma cells (Bmax, 4.28 × 10⁷ molecules of chelator/cell; and Kd, 2.45 μM). Together with the fact that ¹⁴C-Dp44mT uptake was temperature-dependent and significantly (P < 0.01) decreased by competing unlabeled Dp44mT, these observations indicated a saturable transport mechanism consistent with carrier/receptor-mediated transport. Other unlabeled ligands that shared the saturated N4 structural moiety with Dp44mT significantly (P < 0.01) inhibited ¹⁴C-Dp44mT uptake, illustrating its importance for carrier/receptor recognition. Nevertheless, unlabeled Dp44mT most markedly decreased (¹⁴C-Dp44mT uptake, demonstrating that the putative carrier/receptor shows high selectivity for Dp44mT. Interestingly, in contrast to ¹⁴C-Dp44mT, uptake of its Fe complex [Fe(¹⁴C-Dp44mT)₂] was not saturable as a function of concentration and was much greater than the ligand alone, indicating an alternate mode of transport. Studies examining the tissue distribution of ¹⁴C-Dp44mT injected intravenously into a mouse tumor model demonstrated the ¹⁴C label was primarily identified in the excretory system. Collectively, these findings examining the mechanism of Dp44mT uptake and its distribution and excretion have clinical implications for its bioavailability and uptake in vivo.
Collapse
Affiliation(s)
- Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Merlot AM, Pantarat N, Lovejoy DB, Kalinowski DS, Richardson DR. Membrane transport and intracellular sequestration of novel thiosemicarbazone chelators for the treatment of cancer. Mol Pharmacol 2010; 78:675-84. [PMID: 20605952 DOI: 10.1124/mol.110.066126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Iron is a critical nutrient for DNA synthesis and cellular proliferation. Targeting iron in cancer cells using specific chelators is a potential new strategy for the development of novel anticancer agents. One such chelator, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), possesses potent and selective anticancer activity (J Med Chem 50:3716-3729, 2007). To elucidate the mechanisms of its potent antitumor activity, Bp4eT was labeled with (14)C. Its efficacy was then compared with the (14)C-labeled iron chelator pyridoxal isonicotinoyl hydrazone (PIH), which exhibits low anticancer activity. The ability of these ligands to permeate the cell membrane and their cellular retention was examined under various conditions using SK-N-MC neuroepithelioma cells. The rate of [(14)C]PIH uptake into cells was significantly (p < 0.001) lower than that of [(14)C]Bp4eT at 37°C, indicating that the increased hydrophilicity of [(14)C]PIH reduced membrane permeability. In contrast, the efflux of [(14)C]PIH was significantly (p < 0.05) higher than that of [(14)C]Bp4eT, leading to increased cellular retention of [(14)C]Bp4eT. In addition, the uptake and release of the (14)C-labeled chelators was not reduced by metabolic inhibitors, indicating that these processes were energy-independent. No significant differences were evident in the uptake of [(14)C]Bp4eT at 37 or 4°C, demonstrating a temperature-independent mechanism. Furthermore, adjusting the pH of the culture medium to model the tumor microenvironment did not affect [(14)C]Bp4eT membrane transport. It can be concluded that [(14)C]Bp4eT more effectively permeated the cell membrane and evaded rapid efflux in contrast to [(14)C]PIH. This property, in part, accounts for the more potent anticancer activity of Bp4eT relative to PIH.
Collapse
Affiliation(s)
- Angelica M Merlot
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
6
|
Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR. Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: identification of pronounced redox activity and characterization of their antitumor activity. J Med Chem 2010; 53:5759-69. [PMID: 20597487 DOI: 10.1021/jm100561b] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The novel chelators 2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazone (HAp44mT) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (HDp44mT) have been examined to elucidate the structure-activity relationships necessary to form copper (Cu) complexes with pronounced antitumor activity. Electrochemical studies demonstrated that the Cu complexes of these ligands had lower redox potentials than their iron complexes. Moreover, the Cu complexes where the ligand/metal ratio was 1:1 rather than 2:1 had significantly higher intracellular oxidative properties and antitumor efficacy. Interestingly, the 2:1 complex was shown to dissociate to give significant amounts of the 1:1 complex that could be the major cytotoxic effector. Both types of Cu complex showed significantly more antiproliferative activity than the ligand alone. We also demonstrate the importance of the inductive effects of substituents on the carbonyl group of the parent ketone, which influence the Cu(II/I) redox potentials because of their proximity to the metal center. The structure-activity relationships described are important for the design of potent thiosemicarbazone Cu complexes.
Collapse
Affiliation(s)
- Patric J Jansson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
7
|
Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR. Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 2009; 52:5271-94. [PMID: 19601577 DOI: 10.1021/jm900552r] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Yu
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Buss JL, Hermes-Lima M, Ponka P. Pyridoxal isonicotinoyl hydrazone and its analogues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 509:205-29. [PMID: 12572996 DOI: 10.1007/978-1-4615-0593-8_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Joan L Buss
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Chaston TB, Richardson DR. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am J Hematol 2003; 73:200-10. [PMID: 12827659 DOI: 10.1002/ajh.10348] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The success of the iron (Fe) chelator desferrioxamine (DFO) in the treatment of beta-thalassemia is limited by its lack of bioavailability. The design and characterization of synthetic alternatives to DFO has attracted much scientific interest and has led to the discovery of orally active chelators that can remove pathological Fe deposits. However, chelators that access intracellular Fe pools can be toxic by either inhibiting Fe-containing enzymes or promoting Fe-mediated free radical damage. Interestingly, toxicity does not necessarily correlate with Fe-binding affinity or with chelation efficacy, suggesting that other factors may promote the cytopathic effects of chelators. In this review, we discuss the interactions of chelators and their Fe complexes with biomolecules that can lead to toxicity and tissue damage.
Collapse
Affiliation(s)
- Timothy B Chaston
- Children's Cancer Institute Australia for Medical Research, The Iron Metabolism and Chelation Program, Randwick, Sydney, New South Wales, Australia
| | | |
Collapse
|
10
|
Chaston TB, Richardson DR. Interactions of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone class of chelators with iron and DNA: implications for toxicity in the treatment of iron overload disease. J Biol Inorg Chem 2003; 8:427-38. [PMID: 12761664 DOI: 10.1007/s00775-002-0434-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 11/15/2002] [Indexed: 10/18/2022]
Abstract
Iron chelation therapy for the management of iron-overload disease is dominated by desferrioxamine (DFO). However, treatment using DFO is very arduous. Recently, novel Fe chelators of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone (PCIH) class have shown high chelation efficacy and the potential to replace DFO. A critical consideration in the design of alternatives to DFO is that the chelator forms a redox-inert Fe complex. In the present study, the participation of Fe complexes in redox reactions has been investigated. Ascorbate oxidation in the presence of Fe(III) or benzoate hydroxylation in the presence of Fe(II) was not enhanced by the PCIH analogues. However, redox-induced DNA strand breaks were observed with these ligands under highly oxidizing conditions in the presence of Fe(II) and hydrogen peroxide. Experiments then examined the interactions of the PCIH analogues with DNA, and this was found to be weak. Considering this, we suggest that under extreme conditions seen in the DNA-strand break assay, weak DNA-binding may potentiate the redox activity of the PCIH analogues. However, importantly, in contrast to naked plasmid DNA, DNA damage by these chelators using intact human cells was not significant. Collectively, our results support the potential of the PCIH analogues for the treatment of Fe overload.
Collapse
Affiliation(s)
- Timothy B Chaston
- Iron Metabolism and Chelation Program, Children's Cancer Institute Australia for Medical Research, High Street, Randwick, PO Box 81, 2031, Sydney, New South Wales, Australia
| | | |
Collapse
|
11
|
Buss JL, Arduini E, Shephard KC, Ponka P. Lipophilicity of analogs of pyridoxal isonicotinoyl hydrazone (PIH) determines the efflux of iron complexes and toxicity in K562 cells. Biochem Pharmacol 2003; 65:349-60. [PMID: 12527328 DOI: 10.1016/s0006-2952(02)01551-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Iron overload secondary to beta-thalassemia and other iron-loading anemias is the most serious obstacle to be overcome in the treatment of these diseases, since there is no physiological mechanism for excretion of the excess iron acquired by chronic blood transfusion. Due to the inconvenience and cost of the current iron chelation therapy, the search for an orally available iron chelator is ongoing. Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective at mobilizing iron in vivo and in vitro at doses that are not toxic. PIH analogs were approximately equally effective at binding 59Fe within K562 cells; their efficacy depended upon the kinetics of release of the iron-chelator complex from the cell, which was correlated inversely with the lipophilicity of the chelators. Addition of BSA, which has a well-characterized affinity for lipophilic species, to the extracellular medium enhanced iron-chelator efflux, such that all analogs caused 59Fe release from the cells as quickly as it was chelated; this suggests that BSA acts as an extracellular sink for the iron-chelator complexes, many of which are highly lipophilic. The toxicity of the free chelators varied over two orders of magnitude, and was correlated with the amount of intracellular 59Fe-chelator complexes, implicating the complexes in the mechanism of toxicity of the chelators. Understanding the structural features that determine the efficacy and toxicity of iron chelators in biological systems is of value in the selection of PIH analogs for in vivo examination.
Collapse
Affiliation(s)
- Joan L Buss
- Department of Physiology, McGill University, and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Chemin de la Cote-Ste-Catherine, Montreal, Que., Canada H3T 1E2
| | | | | | | |
Collapse
|
12
|
Richardson DR. Friedreich's ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs 2003; 12:235-45. [PMID: 12556217 DOI: 10.1517/13543784.12.2.235] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Friedreich's ataxia (FA) is a severe inherited spinocerebellar ataxia that primarily affects the nervous system and heart leading to early confinement in a wheelchair and death. The gene defective in FA, FRDA, encodes a mitochondrial protein known as frataxin. A triplet repeat expansion within intron 1 of the FRDA gene results in a marked decrease in frataxin expression. Over the last 5 years it has become clear that this results in mitochondrial iron accumulation that generates oxidative stress and results in damage to critical biological molecules. Drugs that reduce oxidative stress have a limited effect on the progression and pathology of the disease, probably because these agents cannot remove the iron accumulation. In this review, the potential of iron chelators, namely the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) analogues, as agents to remove mitochondrial iron deposits is discussed. These ligands have been specifically designed to enter and target mitochondrial iron pools, which is a property lacking in desferrioxamine, the only chelator in widespread clinical use. This latter drug may not have any beneficial effect in FA patients, probably because of its hydrophilicity that prevents mitochondrial access. Indeed, standard chelation regimens will probably not work in FA, as these patients do not exhibit gross iron-loading. Considering that there is no effective treatment for FA, it is essential that the therapeutic potential of iron chelators that target mitochondrial iron pools is assessed experimentally.
Collapse
Affiliation(s)
- D R Richardson
- Children's Cancer Institute Australia for Medical Research, Iron Metabolism and Chelation Program, High St (PO Box 81), Randwick, Sydney, New South Wales, 2031, Australia.
| |
Collapse
|
13
|
Lovejoy DB, Richardson DR. Novel "hybrid" iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood 2002; 100:666-76. [PMID: 12091363 DOI: 10.1182/blood.v100.2.666] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) and other aroylhydrazone chelators possess potent antineoplastic activity because of their ability to bind iron (Fe). From these studies, we identified structural components of the hydrazones that provide antineoplastic activity, namely the salicylaldehyde and 2-hydroxy-1-naphthylaldehyde moieties. A related group of chelators known as the thiosemicarbazones also show pronounced antitumor activity because of their ability to inhibit ribonucleotide reductase. Considering this, we designed a new series of "hybrid ligands" by condensation of the aldehydes described above with a range of thiosemicarbazides. The parent compound of these ligands is 2-hydroxy-1-naphthylaldehyde thiosemicarbazone (NT). Of 8 NT analogues, 3 chelators, namely NT, N4mT (2-hydroxy-1-naphthylaldehyde-4-methyl-3-thiosemicarbazone), and N44mT (2-hydroxy-1-naphthylaldehyde-4,4-dimethyl-3-thiosemicarbazone), showed high antiproliferative activity against SK-N-MC neuroepithelioma cells (50% inhibitory concentration [IC(50)] = 0.5-1.5 microM). Indeed, their activity was significantly (P <.0001) greater than that of desferrioxamine (DFO) (IC(50) = 22 microM). We demonstrate that 311, a 311 analogue (311m), and several NT-series chelators have significantly (P <.001) greater antiproliferative activity against tumor cells than against a range of normal cell types. For example, the IC(50) values of NT and N4mT in SK-N-MC neuroepithelioma cells were 0.5 microM, whereas for fibroblasts the IC(50) values were greater than 25 microM. Further, the effect of one of the most potent chelators (311m) on preventing the growth of bone marrow stem cell cultures was far less than that of doxorubicin and similar to that of cisplatin. These studies support the further development of these chelators as antiproliferative agents.
Collapse
Affiliation(s)
- David B Lovejoy
- Heart Research Institute, The Iron Metabolism and Chelation Group, Camperdown, Sydney, New South Wales, Australia
| | | |
Collapse
|
14
|
Abstract
Iron homeostasis is maintained by regulating its absorption: Under conditions of deficiency, assimilation is enhanced but iron uptake is otherwise limited to prevent toxicity due to overload. Iron deficiency remains the most important micronutrient deficiency worldwide, but increasing awareness of the genetic basis for iron-loading diseases points to iron overload as a major public health issue as well. Recent identification of mutant alleles causing iron uptake disorders in mice and humans provides new insights into the mechanisms involved in iron transport and its regulation. This article summarizes these discoveries and discusses their impact on our current understanding of iron transport and its regulation.
Collapse
Affiliation(s)
- M Wessling-Resnick
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
15
|
Watts RN, Richardson DR. Nitrogen monoxide (no) and glucose: unexpected links between energy metabolism and no-mediated iron mobilization from cells. J Biol Chem 2001; 276:4724-32. [PMID: 11078730 DOI: 10.1074/jbc.m006318200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nitrogen monoxide (NO) affects cellular iron metabolism due to its high affinity for this metal ion. Indeed, NO has been shown to increase the mRNA binding activity of the iron-regulatory protein 1, which is a major regulator of iron homeostasis. Recently, we have shown that NO generators increase (59)Fe efflux from cells prelabeled with (59)Fe-transferrin (Wardrop, S. L., Watts, R. N., and Richardson, D. R. (2000) Biochemistry 39, 2748-2758). The mechanism involved in this process remains unknown, and in this investigation we demonstrate that it is potentiated upon adding d-glucose (d-Glc) to the reincubation medium. In d-Glc-free or d-Glc-containing media, 5.6 and 16.5% of cellular (59)Fe was released, respectively, in the presence of S-nitrosoglutathione. This difference in (59)Fe release was observed with a variety of NO generators and cell types and was not due to a change in cell viability. Kinetic studies showed that d-Glc had no effect on the rate of NO production by NO generators. Moreover, only the metabolizable monosaccharides d-Glc and d-mannose could stimulate NO-mediated (59)Fe mobilization, whereas other sugars not easily metabolized by fibroblasts had no effect. Hence, metabolism of the monosaccharides was essential to increase NO-mediated (59)Fe release. Incubation of cells with the citric acid cycle intermediates, citrate and pyruvate, did not enhance NO-mediated (59)Fe release. Significantly, preincubation with the GSH-depleting agents, l-buthionine-[S,R]-sulfoximine or diethyl maleate, prevented NO-mediated (59)Fe mobilization. This effect was reversed by incubating cells with N-acetyl-l-cysteine that reconstitutes GSH. These results indicate that GSH levels are essential for NO-mediated (59)Fe efflux. Hence, d-Glc metabolism via the hexose monophosphate shunt resulting in the generation of GSH may be essential for NO-mediated (59)Fe release. These results have important implications for intracellular signaling by NO and also NO-mediated cytotoxicity of activated macrophages that is due, in part, to iron release from tumor target cells.
Collapse
Affiliation(s)
- R N Watts
- Iron Metabolism and Chelation Group, the Heart Research Institute, 145 Missenden Rd, Camperdown, Sydney, New South Wales 2050, Australia
| | | |
Collapse
|
16
|
Abstract
In recent years there has been much interest in the development of iron (Fe) chelators for treatment of a number of clinical conditions in addition to beta-thalassaemia. These include cancer, anthracycline-mediated cardiotoxicity, malaria, AIDS and the severe neurodegenerative disease, Friedreich's ataxia. In this review I will discuss the most recent advances achieved in the potential treatment of these conditions using Fe chelators.
Collapse
|
17
|
Richardson DR. Role of ceruloplasmin and ascorbate in cellular iron release. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:454-65. [PMID: 10560938 DOI: 10.1016/s0022-2143(99)90166-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The process of iron (Fe) release from cells plays an important role in health and disease, although the mechanisms responsible remain unclear. In this study we have examined the process of Fe efflux from HepG2 cells, including the possible roles of Cp and ascorbate in this process. Recently, it has been suggested that Cp plays no role in Fe release but can increase Fe uptake by Fe-deficient HepG2 cells (Mukhopadhyay et al. Science 1998;279:714-7). However, this latter study used a nonphysiologically relevant Fe complex (iron 59-NTA) to label cells with 59Fe at a nonphysiologic temperature (25 degrees C) and Cp concentration (<100 microg/mL). Because of these problems, the experiments have been repeated by maintaining physiologic conditions and labeling cells with the physiologic Fe donor diferric Tf. When cells were labeled at 37 degrees C with 59Fe-Tf in the presence of a physiologically relevant Cp concentration (300 microg/mL), this latter protein had no effect on the uptake of 59Fe in control cells or in cells depleted of Fe by using desferrioxamine. In addition, when Fe-replete or Fe-depleted cells were incubated with 59Fe-NTA at 25 degrees C or 37 degrees C, Cp had no effect on 59Fe uptake compared with the control. When the effect of Cp (10-500 microg/mL) on 59Fe release was examined in cells prelabeled with 59Fe-Tf, a concentration-dependent increase in 59Fe efflux was observed, whereas BSA had no effect. However, in contrast to membrane-permeable Fe chelators that caused a marked increase in Fe release, the effect of Cp on Fe efflux was less impressive. To further investigate the mechanism of 59Fe mobilization, we compared 59Fe efflux among HepG2 cells, SK-Mel-28 melanoma cells, and SK-N-MC neuroblastoma cells. These studies demonstrated that 59Fe release was dependent on the incubation time with 59Fe-Tf, the cell line, and the reincubation temperature. Although 59Fe mobilization from cells was markedly temperature dependent, a range of metabolic inhibitors did not affect 59Fe release. Additional experiments showed that physiologic concentrations of ascorbate reduced 59Fe efflux, whereas glutathione had no effect. This study provides further evidence that Cp is involved in Fe mobilization but does not appear to affect Fe uptake from Tf or NTA.
Collapse
Affiliation(s)
- D R Richardson
- The Department of Medicine, University of Queensland, Royal Brisbane Hospital, Australia
| |
Collapse
|
18
|
Richardson DR. Analogues of pyridoxal isonicotinoyl hydrazone (PIH) as potential iron chelators for the treatment of neoplasia. Leuk Lymphoma 1998; 31:47-60. [PMID: 9720714 DOI: 10.3109/10428199809057584] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer cells have a high requirement for iron (Fe) as it plays a crucial role in a variety of metabolic processes including energy production and DNA synthesis. Studies in vitro and in vivo have demonstrated that the Fe chelator in current clinical use, desferrioxamine (DFO), can effectively inhibit the growth of some neoplasms, including leukemia and neuroblastoma. Unfortunately, DFO suffers from a number of serious disadvantages, including its high cost, the need for prolonged subcutaneous infusion (12-24 h/day, 5-6 nights/week), and its poor intestinal absorption precluding oral administration. Hence, the development of more effective Fe chelators is necessary. The Fe chelator, pyridoxal isonicotinoyl hydrazone (PIH), was initially identified as a ligand that showed high activity at mobilizing Fe from cells. More recently, a range of PIH analogues have been examined for their anti-proliferative effect, with several classes of these compounds showing high activity at inhibiting tumor growth in vitro. In fact, some of these hydrazones, particularly those derived from 2-hydroxy-1-naphthylaldehyde, showed comparable activity to the cytotoxic drugs cis-platin and bleomycin. In this review the role of Fe in cellular proliferation will be examined followed by a description of the most recent studies using the PIH analogues as effective anti-proliferative agents. Further studies in vivo with these Fe chelators are essential to determine their potential as chemotherapeutic agents.
Collapse
Affiliation(s)
- D R Richardson
- Department of Medicine, Royal Brisbane Hospital, Queensland, Australia. D.
| |
Collapse
|
19
|
Richardson DR, Ponka P. Development of iron chelators to treat iron overload disease and their use as experimental tools to probe intracellular iron metabolism. Am J Hematol 1998; 58:299-305. [PMID: 9692394 DOI: 10.1002/(sici)1096-8652(199808)58:4<299::aid-ajh9>3.0.co;2-l] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of an orally effective iron (Fe) chelator for the treatment of Fe overload diseases such as beta-thalassemia has been a difficult challenge. Even though the drug in current clinical use, desferrioxamine (DFO), is efficient and remarkably free of toxicity, it suffers from not being orally effective and requiring long subcutaneous infusion to mobilize sufficient quantities of Fe. In addition, DFO is very expensive, which precludes it from treating most of the world's thalassemic population. Therefore, the development of an economical and orally effective Fe chelator is of great importance. Despite the screening of a wide range of structurally diverse ligands from both natural and synthetic sources, few compounds have been promising enough to proceed to clinical trials. In the current review, the properties of an ideal chelator are discussed, followed by a description of the most successful ligands that have been identified. Apart from the use of Fe chelators as therapeutic agents, some of these compounds have also been useful as experimental probes to investigate cellular Fe metabolism. We describe here the most important of these studies.
Collapse
Affiliation(s)
- D R Richardson
- Department of Medicine, Royal Brisbane Hospital, Herston, Queensland, Australia.
| | | |
Collapse
|
20
|
Richardson DR, Ponka P. Pyridoxal isonicotinoyl hydrazone and its analogs: potential orally effective iron-chelating agents for the treatment of iron overload disease. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1998; 131:306-15. [PMID: 9579383 DOI: 10.1016/s0022-2143(98)90180-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At present, the only iron (Fe) chelator in clinical use for the treatment of Fe overload disease is the tris-hydroxamate deferoxamine (DFO). However, DFO suffers from a number of disadvantages, including the need for subcutaneous infusion (12 to 24 hours a day, 5 or 6 times per week), its poor intestinal absorption, and high cost. Therefore, there is an urgent need for an efficient, economical, and orally effective Fe chelator. Pyridoxal isonicotinoyl hydrazone (PIH) is a tridentate Fe-chelating agent that shows high Fe chelation efficacy both in vitro in cell culture models and also in vivo in rats and mice. In addition, this chelator is relatively nontoxic, economical to synthesize, and orally effective, and it shows high selectivity and affinity for Fe. However, over the last 10 years the development of PIH and its analogs has largely been ignored because of justifiable interest in other ligands such as 1,2-dimethyl-3-hydroxypyrid-4-one (L1). Unfortunately, recent clinical trials have shown that significant complications occur with L1 therapy, and it is controversial whether this chelator is effective at reducing hepatic Fe levels in patients. Because of the current lack of a clinically useful Fe chelator to replace DFO, PIH and its analogs appear to be potential candidate compounds that warrant further investigation. In this review we will discuss the studies that have been performed to characterize these chelators at the chemical and biologic levels as effective agents for treating Fe overload. The evidence from the literature suggests that these ligands deserve further careful investigation as potential orally effective Fe chelators.
Collapse
Affiliation(s)
- D R Richardson
- Department of Medicine, Royal Brisbane Hospital, Herston, Queensland, Australia
| | | |
Collapse
|