1
|
Adams HR, Fujii S, Pfalzgraf HE, Smyth P, Andrew CR, Hough MA. Cytochromes P460 and c'-β: exploiting a novel fold for multiple functions. J Biol Inorg Chem 2025; 30:181-207. [PMID: 40009202 PMCID: PMC11928373 DOI: 10.1007/s00775-025-02102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Two related classes of ligand-binding heme c-containing proteins with a high degree of structural homology have been identified and characterized over recent decades: cytochromes P460 (cyts P460), defined by an unusual heme-lysine cross-link, and cytochromes c'-β (cyts c'-β), containing a canonical c-heme without the lysine cross-link. The shared protein fold of the cyt P460-cyt c'-β superfamily can accommodate a variety of heme environments with entirely different reactivities. On the one hand, cyts P460 with polar distal pockets have been shown to oxidize NH2OH to NO and/or N2O via proton-coupled electron transfer. On the other hand, cyts c'-β with hydrophobic distal pockets have a proposed gas binding function similar to the unrelated, but more extensively characterized, alpha helical cytochromes c'. Recent studies have also identified 'halfway house' proteins (cyts P460 with non-polar heme pockets and cyts c'-β with polar distal heme pockets) with functions yet to be resolved. Here, we review the structural, spectroscopic and enzymatic properties of the cyt P460-cyt c'-β superfamily with a view to understanding the structural determinants of their different functional properties.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Hans E Pfalzgraf
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Peter Smyth
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, OR, 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.
| |
Collapse
|
2
|
Suzuki S, Morita Y, Ishige S, Kai K, Kawasaki K, Matsushita K, Ogura K, Miyoshi-Akiyama† T, Shimizu T. Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001464. [PMID: 38900549 PMCID: PMC11263931 DOI: 10.1099/mic.0.001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Shin Suzuki
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shota Ishige
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kiyohiro Kai
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Kohei Ogura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 6110011, Japan
| | - Tohru Miyoshi-Akiyama†
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| |
Collapse
|
3
|
Mefferd CC, Zhou E, Seymour CO, Bernardo NA, Srivastava S, Bengtson AJ, Jiao JY, Dong H, Li WJ, Hedlund BP. Incomplete denitrification phenotypes in diverse Thermus species from diverse geothermal spring sediments and adjacent soils in southwest China. Extremophiles 2022; 26:23. [PMID: 35802188 PMCID: PMC9270275 DOI: 10.1007/s00792-022-01272-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
A few members of the bacterial genus Thermus have been shown to be incomplete denitrifiers, terminating with nitrite (NO2-) or nitrous oxide (N2O). However, the denitrification abilities of the genus as a whole remain poorly characterized. Here, we describe diverse denitrification phenotypes and genotypes of a collection of 24 strains representing ten species, all isolated from a variety of geothermal systems in China. Confirmed terminal products of nitrate reduction were nitrite or N2O, while nitric oxide (NO) was inferred as the terminal product in some strains. Most strains produced N2O; complete denitrification was not observed. Denitrification phenotypes were largely consistent with the presence of denitrification genes, and strains of the same species often had the same denitrification phenotypes and largely syntenous denitrification gene clusters. Genes for nirS and nirK coexisted in three Thermus brockianus and three Thermus oshimai genomes, which is a unique hallmark of some denitrifying Thermus strains and may be ecologically important. These results show that incomplete denitrification phenotypes are prominent, but variable, within and between Thermus species. The incomplete denitrification phenotypes described here suggest Thermus species may play important roles in consortial denitrification in high-temperature terrestrial biotopes where sufficient supply of oxidized inorganic nitrogen exists.
Collapse
Affiliation(s)
| | - Enmin Zhou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- School of Earth Sciences, Yunnan University, Kunming, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Noel A Bernardo
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Shreya Srivastava
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Amanda J Bengtson
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- SWCA Environmental Consultants, Las Vegas, NV, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
4
|
The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications. Antioxidants (Basel) 2022; 11:antiox11071222. [PMID: 35883712 PMCID: PMC9311577 DOI: 10.3390/antiox11071222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide was once considered to be of marginal interest to the biological sciences and medicine; however, there is now wide recognition, but not yet a comprehensive understanding, of its functions and effects. NO is a reactive, toxic free radical with numerous biological targets, especially metal ions. However, NO and its reaction products also play key roles as reductant and oxidant in biological redox processes, in signal transduction, immunity and infection, as well as other roles. Consequently, it can be sensed, metabolized and modified in biological systems. Here, we present a brief overview of the chemistry and biology of NO—in particular, its origins in geological time and in contemporary biology, its toxic consequences and its critical biological functions. Given that NO, with its intrinsic reactivity, appeared in the early Earth’s atmosphere before the evolution of complex lifeforms, we speculate that the potential for toxicity preceded biological function. To examine this hypothesis, we consider the nature of non-biological and biological targets of NO, the evolution of biological mechanisms for NO detoxification, and how living organisms generate this multifunctional gas.
Collapse
|
5
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
6
|
Novel gene similar to nitrite reductase (NO forming) plays potentially important role in the latency of tuberculosis. Sci Rep 2021; 11:19813. [PMID: 34615967 PMCID: PMC8494734 DOI: 10.1038/s41598-021-99346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
The development of the latent phenotype of Mycobacterium tuberculosis (Mtb) in the human lungs is the major hurdle to eradicate Tuberculosis. We recently reported that exposure to nitrite (10 mM) for six days under in vitro aerobic conditions completely transforms the bacilli into a viable but non-cultivable phenotype. Herein, we show that nitrite (beyond 5 mM) treated Mtb produces nitric oxide (NO) within the cell in a dose-dependent manner. Our search for the conserved sequence of NO synthesizing enzyme in the bacterial system identified MRA2164 and MRA0854 genes, of which the former was found to be significantly up regulated after nitrite exposure. In addition, the purified recombinant MRA2164 protein shows significant nitrite dependent NO synthesizing activity. The knockdown of the MRA2164 gene at mRNA level expression resulted in a significantly reduced NO level compared to the wild type bacilli with a simultaneous return of its replicative capability. Therefore, this study first time reports that nitrite induces dormancy in Mtb cells through induced expression of the MRA2164 gene and productions of NO as a mechanism for maintaining non-replicative stage in Mtb. This observation could help to control the Tuberculosis disease, especially the latent phenotype of the bacilli.
Collapse
|
7
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Wang KK, Tian Y, Li PF, Liu CY, Yang GP. Sources of nitric oxide during the outbreak of Ulva prolifera in coastal waters of the Yellow Sea off Qingdao. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105177. [PMID: 33080558 DOI: 10.1016/j.marenvres.2020.105177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) has been identified as a key physiological modulator and signaling molecule in animals and plants. However, due to its high reactivity, our knowledge of its production and consumption pathways in the ocean remain limited. Laboratory experiments showed that Ulva prolifera can produce NO, producing as much as 0.44 ± 0.04 nmol h-1 g-1. During the growth period, U. prolifera released NO, but during the decay period NO was absorbed by U. prolifera and bacteria. Furthermore, field investigations examined NO concentrations in the coastal waters of the Yellow Sea off Qingdao, where the U. prolifera green tide occurred in summer 2018. The average concentrations of NO in the surface seawater were 70.2 ± 38.2 pmol L-1 and 18.9 ± 10.3 pmol L-1 in the late- and after-bloom periods, respectively. NO release by U. prolifera was the primary contributor to the high NO concentrations during the late-bloom period. The study area was a net source of NO to the atmosphere during the study period, with average NO sea-air fluxes from the Qingdao coastal waters being 1.5 × 10-12 mol m-2 s-1 and 0.4 × 10-12 mol m-2 s-1 in the late- and after-bloom periods, respectively. This study concluded that the coastal waters of the Yellow Sea off Qingdao contributed more NO to the atmosphere during the bloom of U. prolifera than afterward.
Collapse
Affiliation(s)
- Ke-Ke Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ye Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Pei-Feng Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
9
|
Effect of Sub-MICs of Macrolides on the Sensitivity of Pseudomonas aeruginosa to Nitrosative Stress: Effectiveness against P. aeruginosa with and without Multidrug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.01180-20. [PMID: 32718959 DOI: 10.1128/aac.01180-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Sub-MICs of the 14-membered macrolides erythromycin (EM) and clarithromycin (CAM) decreased the growth of Pseudomonas aeruginosa PAO1 and increased its sensitivity to endogenous and exogenous nitrosative stress. However, a 16-membered macrolide, josamycin (JM), was not or less effective. In 9 of 13 non-multidrug-resistant P. aeruginosa (non-MDRP) and 9 of 27 MDRP ST235 strains, the sub-MIC of EM induced significant reductions in bacterial numbers following treatment with a nitric oxide donor.
Collapse
|
10
|
Theoretical basis of nitrosomyoglobin formation in a dry sausage model by coagulase-negative staphylococci: Behavior and expression of nitric oxide synthase. Meat Sci 2019; 161:108022. [PMID: 31838366 DOI: 10.1016/j.meatsci.2019.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023]
Abstract
Three coagulase-negative staphylococci (CNS) species were investigated for gene expression of nitric oxide synthase (NOS) and the ability of nitrosomyoglobin (NO-Mb) formation in a dry sausage model without nitrite addition. The expression of nos gene was systematically proven from DNA to RNA to protein, and nitric oxide (NO) generation was also directly detected. In the dry sausage model system, the redness (a*-values) of samples inoculated with the three CNS species were higher than those inoculated with Pediococcus pentosaceus and the control (P < 0.05). The results from UV-vis and electron spin resonance spectroscopies revealed that pentacoordinate NO-Mb was formed in the sausages with either CNS or nitrite added. The sausage inoculated with Staphylococcus vitulinus had the highest NO-Mb content among the CNS-treated sausages. Dimer interface residues and phosphorylation sites of NOS in . itulinus differ from the other two CNS species as revealed by amino acid sequences, which may be responsible for the different catalytic activities.
Collapse
|
11
|
Shimizu T, Matsumoto A, Noda M. Cooperative Roles of Nitric Oxide-Metabolizing Enzymes To Counteract Nitrosative Stress in Enterohemorrhagic Escherichia coli. Infect Immun 2019; 87:e00334-19. [PMID: 31209149 PMCID: PMC6704613 DOI: 10.1128/iai.00334-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/08/2019] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, School of Medicine, Toho University, Tokyo, Japan
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Yamanaka M, Nakayama R, Fujii S, Wakai S, Sambongi Y, Hirota S. Conferment of CO-Controlled Dimer–Monomer Transition Property to Thermostable Cytochromec′ by Mutation in the Subunit–Subunit Interface. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ryoko Nakayama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
13
|
Reyes VC, Merino N, Gedalanga PB, Van Nostrand JD, Keely SP, De Long SK, Zhou J, Mahendra S. Differential Sensitivity of Wetland-Derived Nitrogen Cycling Microorganisms to Copper Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:11642-11652. [PMID: 33354438 PMCID: PMC7751626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metallic nanoparticles (NPs), the most abundant nanomaterials in consumer and industrial products, are the most probable class to enter the environment. In this study, wetland-derived microcosms were incubated with copper nanoparticles (Cu-NP) and ionic CuCl2 to investigate acute (10 days) and chronic (100 days) exposure towards nitrogen cycling microorganisms. The microbial ecology of wetlands play a crucial role in balancing nitrogen in pristine environments as well as in areas impacted by high nutrient loads (e.g., at wastewater effluent discharges). Gene abundance and expression changes were monitored using the GeoChip 5.0 high throughput functional gene microarray and metatranscriptomic shotgun sequencing (RNA-seq), respectively. After 10 days, the Cu-NP impacted microbial communities experienced structural shifts within microorganisms associated with dissimilatory nitrogen reduction accompanied by lower nitrate removal as compared to the unexposed controls. By day 100, these differences were largely resolved and nitrate removal was similar to the unexposed control. Furthermore, the Cu-NP exposed microcosms tolerated copper and were more resilient and adaptive than the unexposed controls based on the abundance and expression of other functions, including electron transfer, metal homeostasis, and stress response. These findings suggest sudden influxes of Cu-NPs into wetland systems may impair nitrogen removal initially, but long-term microbial shifts and functional redundancy would promote the net flux of total nitrogen out of the wetlands.
Collapse
Affiliation(s)
- Vincent C Reyes
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095
| | - Nancy Merino
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73072
| | - Scott P Keely
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73072
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 900095
| |
Collapse
|
14
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:712-724. [PMID: 29883591 DOI: 10.1016/j.bbabio.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/05/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The superfamily of heme‑copper oxidoreductases (HCOs) include both NO and O2 reductases. Nitric oxide reductases (NORs) are bacterial membrane enzymes that catalyze an intermediate step of denitrification by reducing nitric oxide (NO) to nitrous oxide (N2O). They are structurally similar to heme‑copper oxygen reductases (HCOs), which reduce O2 to water. The experimentally observed apparent bimolecular rate constant of NO delivery to the deeply buried catalytic site of NORs was previously reported to approach the diffusion-controlled limit (108-109 M-1 s-1). Using the crystal structure of cytochrome-c dependent NOR (cNOR) from Pseudomonas aeruginosa, we employed several protocols of molecular dynamics (MD) simulation, which include flooding simulations of NO molecules, implicit ligand sampling and umbrella sampling simulations, to elucidate how NO in solution accesses the catalytic site of this cNOR. The results show that NO partitions into the membrane, enters the enzyme from the lipid bilayer and diffuses to the catalytic site via a hydrophobic tunnel that is resolved in the crystal structures. This is similar to what has been found for O2 diffusion through the closely related O2 reductases. The apparent second order rate constant approximated using the simulation data is ~5 × 108 M-1 s-1, which is optimized by the dynamics of the amino acid side chains lining in the tunnel. It is concluded that both NO and O2 reductases utilize well defined hydrophobic tunnels to assure that substrate diffusion to the buried catalytic sites is not rate limiting under physiological conditions.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Bock RM, Jones EN, Ray DA, Sonny Bal B, Pezzotti G, McEntire BJ. Bacteriostatic behavior of surface modulated silicon nitride in comparison to polyetheretherketone and titanium. J Biomed Mater Res A 2017; 105:1521-1534. [PMID: 28000413 DOI: 10.1002/jbm.a.35987] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023]
Abstract
Perioperative and latent infections are leading causes of revision surgery for orthopaedic devices resulting in significant increased patient care, comorbidities, and attendant costs. Identifying biomaterial surfaces that inherently resist biofilm adhesion and bacterial expression is an important emerging strategy in addressing implant-related infections. This in vitro study was designed to compare biofilm formation on three biomaterials commonly employed in spinal fusion surgery-silicon nitride (Si3 N4 ), polyetheretherketone (PEEK), and a titanium alloy (Ti6Al4V-ELI) -using one gram-positive and one gram-negative bacterial species. Disc samples from various surface treated Si3 N4 , PEEK, and Ti6Al4V were inoculated with 105 CFU/mm2 Staphylococcus epidermidis (ATCC®14990™) or Escherichia coli (ATCC® 25922™) and cultured in PBS, 7% glucose, and 10% human plasma for 24 and 48 h, followed by retrieval and rinsing. Vortexed solutions were diluted, plated, and incubated at 37 °C for 24 to 48 h. Colony forming units (CFU/mm2 ) were determined using applicable dilution factors and surface areas. A two-tailed, heteroscedastic Student's t-test (95% confidence) was used to determine statistical significance. The various Si3 N4 samples showed the most favorable bacterial resistance for both bacilli tested. The mechanisms for the bacteriostatic behavior of Si3 N4 are likely due to multivariate surface effects including submicron-topography, negative charging, and chemical interactions which form peroxynitrite (an oxidative agent). Si3 N4 is a new biomaterial with the apparent potential to inhibit biofilm formation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1521-1534, 2017.
Collapse
Affiliation(s)
- Ryan M Bock
- Amedica Corporation, 1885 W. 2100 S, Salt Lake City, Utah, 84119
| | - Erin N Jones
- Amedica Corporation, 1885 W. 2100 S, Salt Lake City, Utah, 84119
| | - Darin A Ray
- Amedica Corporation, 1885 W. 2100 S, Salt Lake City, Utah, 84119
| | - B Sonny Bal
- Amedica Corporation, 1885 W. 2100 S, Salt Lake City, Utah, 84119.,Department of Orthopaedic Surgery, College of Medicine, University of Missouri, Columbia, Missouri, 65212
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Matsugasaki, 606-8585, Japan
| | - Bryan J McEntire
- Amedica Corporation, 1885 W. 2100 S, Salt Lake City, Utah, 84119
| |
Collapse
|
16
|
Ichimura K, Shimizu T, Matsumoto A, Hirai S, Yokoyama E, Takeuchi H, Yahiro K, Noda M. Nitric oxide-enhanced Shiga toxin production was regulated by Fur and RecA in enterohemorrhagic Escherichia coli O157. Microbiologyopen 2017; 6. [PMID: 28294553 PMCID: PMC5552940 DOI: 10.1002/mbo3.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Nitric oxide (NO), which acts as an antimicrobial defense molecule, was found to enhance the production of Stx1 and Stx2 in EHEC under anaerobic conditions. Although EHEC O157 has two types of anaerobic NO reductase genes, an intact norV and a deleted norV, in the deleted norV‐type EHEC, a high concentration of NO (12–29 μmol/L, maximum steady‐state concentration) is required for enhanced Stx1 production and a low concentration of NO (~12 μmol/L, maximum steady‐state concentration) is sufficient for enhanced Stx2 production under anaerobic conditions. These results suggested that different concentration thresholds of NO elicit a discrete set of Stx1 and Stx2 production pathways. Moreover, the enhancement of Shiga toxin production in the intact norV‐type EHEC required treatment with a higher concentration of NO than was required for enhancement of Shiga toxin production in the deleted norV‐type EHEC, suggesting that the specific NorV type plays an important role in the level of enhancement of Shiga toxin production in response to NO. Finally, Fur derepression and RecA activation in EHEC were shown to participate in the NO‐enhanced Stx1 and Stx2 production, respectively.
Collapse
Affiliation(s)
- Kimitoshi Ichimura
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Shimizu
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akio Matsumoto
- Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Hiroki Takeuchi
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kinnosuke Yahiro
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masatoshi Noda
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
18
|
Crack JC, Hutchings MI, Thomson AJ, Le Brun NE. Biochemical properties of Paracoccus denitrificans FnrP: reactions with molecular oxygen and nitric oxide. J Biol Inorg Chem 2016; 21:71-82. [PMID: 26790880 PMCID: PMC4771820 DOI: 10.1007/s00775-015-1326-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe–4S] cluster-containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe–4S] to [2Fe–2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~sixfold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer–dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe–4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew J Thomson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
19
|
Mansor M, Hamilton TL, Fantle MS, Macalady JL. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front Microbiol 2015; 6:822. [PMID: 26322031 PMCID: PMC4530308 DOI: 10.3389/fmicb.2015.00822] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
Large, sulfur-cycling, calcite-precipitating bacteria in the genus Achromatium represent a significant proportion of bacterial communities near sediment-water interfaces at sites throughout the world. Our understanding of their potentially crucial roles in calcium, carbon, sulfur, nitrogen, and iron cycling is limited because they have not been cultured or sequenced using environmental genomics approaches to date. We utilized single-cell genomic sequencing to obtain one incomplete and two nearly complete draft genomes for Achromatium collected at Warm Mineral Springs (WMS), FL. Based on 16S rRNA gene sequences, the three cells represent distinct and relatively distant Achromatium populations (91-92% identity). The draft genomes encode key genes involved in sulfur and hydrogen oxidation; oxygen, nitrogen and polysulfide respiration; carbon and nitrogen fixation; organic carbon assimilation and storage; chemotaxis; twitching motility; antibiotic resistance; and membrane transport. Known genes for iron and manganese energy metabolism were not detected. The presence of pyrophosphatase and vacuolar (V)-type ATPases, which are generally rare in bacterial genomes, suggests a role for these enzymes in calcium transport, proton pumping, and/or energy generation in the membranes of calcite-containing inclusions.
Collapse
Affiliation(s)
- Muammar Mansor
- Geosciences Department, Pennsylvania State University University Park, PA, USA
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Matthew S Fantle
- Geosciences Department, Pennsylvania State University University Park, PA, USA
| | - Jennifer L Macalady
- Geosciences Department, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
20
|
Hough MA, Andrew CR. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing. Adv Microb Physiol 2015; 67:1-84. [PMID: 26616515 DOI: 10.1016/bs.ampbs.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins.
Collapse
|
21
|
Victor E, Minier MA, Lippard SJ. Synthesis and Characterization of a Linear Dinitrosyl‐Triiron Complex. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eric Victor
- Department of Chemist, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA 02139, http://web.mit.edu/lippardlab/
| | - Mikael A. Minier
- Department of Chemist, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA 02139, http://web.mit.edu/lippardlab/
| | - Stephen J. Lippard
- Department of Chemist, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA 02139, http://web.mit.edu/lippardlab/
| |
Collapse
|
22
|
A third subunit in ancestral cytochrome c-dependent nitric oxide reductases. Appl Environ Microbiol 2014; 80:4871-8. [PMID: 24907324 DOI: 10.1128/aem.00790-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduction of NO to N2O by denitrifiying bacteria is catalyzed either by a monomeric quinol-nitric oxide reductase (qNor) or by a heterodimeric cytochrome c-dependent nitric oxide reductase (cNor). In ancient thermophilic bacteria belonging to the Thermales and Aquificales phylogenetic groups, the cluster encoding the cNor includes a small third gene (norH), in addition to those encoding homologues to the subunits of a typical cNor (norC and norB). We show in Thermus thermophilus that the three genes are cotranscribed in a single mRNA from an inducible promoter. The isolation of individual nor mutants and the production in vivo of His-tagged NorH protein followed by immobilized-metal affinity chromatography (IMAC) allowed us to conclude that NorH constitutes a third subunit of the cNor from T. thermophilus, which is involved in denitrification in vivo, likely allowing more efficient electron transport to cNor.
Collapse
|
23
|
Verbaendert I, Hoefman S, Boeckx P, Boon N, De Vos P. Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. FEMS Microbiol Ecol 2014; 89:162-80. [PMID: 24784780 DOI: 10.1111/1574-6941.12346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022] Open
Abstract
Although efforts have been made the past few years, knowledge on genomic and phenotypic diversity and occurrence of the denitrification ability in Gram-positive bacteria are still fragmentary. Many environmental monitoring approaches have used nir, nor, and nos genes as marker genes for detection of denitrification or denitrifying bacteria. However, primers used in these methods often fail to detect the genes in specific bacterial taxa, such as Gram-positive denitrifiers. In this study, novel primer sets specifically targeting nirK, qnorB, and nosZ genes of the Firmicute genus Geobacillus were developed by genomic mining and tested in parallel with commonly used primers on a set of phylogenetically closely related denitrifying geobacilli. Novel nirK and qnorB sequences were recovered from all strains tested, whereas nosZ was detected in part of the strain set, which was in agreement with observed phenotypes. Interspecies and modest intraspecies variations in amplified fragment length polymorphism (AFLP) patterns were observed, verifying presence of genomic variation within the strain set. Our study shows that closely related Gram-positive denitrifiers may differ in denitrification phenotype and genotype. But foremost, novel primers targeting very divergent nirK, qnorB, and nosZ gene sequences of Gram-positive denitrifiers, are now available for cultivation-independent environmental surveys.
Collapse
Affiliation(s)
- Ines Verbaendert
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
24
|
Victor E, Lippard SJ. A Tetranitrosyl [4Fe–4S] Cluster Forms En Route to Roussin’s Black Anion: Nitric Oxide Reactivity of [Fe4S4(LS3)L′]2–. Inorg Chem 2014; 53:5311-20. [DOI: 10.1021/ic500586g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eric Victor
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
26
|
Crack JC, Green J, Hutchings MI, Thomson AJ, Le Brun NE. Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 2012; 17:1215-31. [PMID: 22239203 PMCID: PMC3430481 DOI: 10.1089/ars.2012.4511] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE In recent years, bacterial iron-sulfur cluster proteins that function as regulators of gene transcription have emerged as a major new group. In all cases, the cluster acts as a sensor of the environment and enables the organism to adapt to the prevailing conditions. This can range from mounting a response to oxidative or nitrosative stress to switching between anaerobic and aerobic respiratory pathways. The sensitivity of these ancient cofactors to small molecule reactive oxygen and nitrogen species, in particular, makes them ideally suited to function as sensors. RECENT ADVANCES An important challenge is to obtain mechanistic and structural information about how these regulators function and, in particular, how the chemistry occurring at the cluster drives the subsequent regulatory response. For several regulators, including FNR, SoxR, NsrR, IscR, and Wbl proteins, major advances in understanding have been gained recently and these are reviewed here. CRITICAL ISSUES A common theme emerging from these studies is that the sensitivity and specificity of the cluster of each regulatory protein must be exquisitely controlled by the protein environment of the cluster. FUTURE DIRECTIONS A major future challenge is to determine, for a range of regulators, the key factors for achieving control of sensitivity/specificity. Such information will lead, eventually, to a system understanding of stress response, which often involves more than one regulator.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Shiro Y, Sugimoto H, Tosha T, Nagano S, Hino T. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Philos Trans R Soc Lond B Biol Sci 2012; 367:1195-203. [PMID: 22451105 DOI: 10.1098/rstb.2011.0310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The crystal structure of the bacterial nitric oxide reductase (cNOR) from Pseudomonas aeruginosa is reported. Its overall structure is similar to those of the main subunit of aerobic and micro-aerobic cytochrome oxidases (COXs), in agreement with the hypothesis that all these enzymes are members of the haem-copper oxidase superfamily. However, substantial structural differences between cNOR and COX are observed in the catalytic centre and the delivery pathway of the catalytic protons, which should be reflected in functional differences between these respiratory enzymes. On the basis of the cNOR structure, we propose a possible reaction mechanism of nitric oxide reduction to nitrous oxide as a working hypothesis.
Collapse
|
28
|
Identification of the genes encoding nitric oxide reductase in the aerobic photosynthetic bacterium Roseobacter denitrificans OCh114. Biosci Biotechnol Biochem 2012; 76:1984-6. [PMID: 23047089 DOI: 10.1271/bbb.120406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A cytochrome bc-type complex of Roseobacter denitrificans OCh114 was thought to be a novel cytochrome c oxidase. To determine its function, we deleted the genes encoding the complex. The mutant grew normally by aerobic respiration, but failed to grow by denitrification and lacked nitric oxide reductase activity, indicating that the physiological function of the gene product is nitric oxide reduction.
Collapse
|
29
|
Shimizu T, Tsutsuki H, Matsumoto A, Nakaya H, Noda M. The nitric oxide reductase of enterohaemorrhagic Escherichia coli plays an important role for the survival within macrophages. Mol Microbiol 2012; 85:492-512. [DOI: 10.1111/j.1365-2958.2012.08122.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Salomonsson L, Reimann J, Tosha T, Krause N, Gonska N, Shiro Y, Adelroth P. Proton transfer in the quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus during reduction of oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1914-20. [PMID: 22538294 DOI: 10.1016/j.bbabio.2012.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 12/17/2022]
Abstract
Bacterial nitric oxide reductases (NOR) are integral membrane proteins that catalyse the reduction of nitric oxide to nitrous oxide, often as a step in the process of denitrification. Most functional data has been obtained with NORs that receive their electrons from a soluble cytochrome c in the periplasm and are hence termed cNOR. Very recently, the structure of a different type of NOR, the quinol-dependent (q)-NOR from the thermophilic bacterium Geobacillus stearothermophilus was solved to atomic resolution [Y. Matsumoto, T. Tosha, A.V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita and Y. Shiro, Nat. Struct. Mol. Biol. 19 (2012) 238-246]. In this study, we have investigated the reaction between this qNOR and oxygen. Our results show that, like some cNORs, the G. stearothermophilus qNOR is capable of O(2) reduction with a turnover of ~3electronss(-1) at 40°C. Furthermore, using the so-called flow-flash technique, we show that the fully reduced (with three available electrons) qNOR reacts with oxygen in a reaction with a time constant of 1.8ms that oxidises the low-spin heme b. This reaction is coupled to proton uptake from solution and presumably forms a ferryl intermediate at the active site. The pH dependence of the reaction is markedly different from a corresponding reaction in cNOR from Paracoccus denitrificans, indicating that possibly the proton uptake mechanism and/or pathway differs between qNOR and cNOR. This study furthermore forms the basis for investigation of the proton transfer pathway in qNOR using both variants with putative proton transfer elements modified and measurements of the vectorial nature of the proton transfer. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Lina Salomonsson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Hino T, Nagano S, Sugimoto H, Tosha T, Shiro Y. Molecular structure and function of bacterial nitric oxide reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:680-7. [PMID: 22001779 DOI: 10.1016/j.bbabio.2011.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
Abstract
The crystal structure of the membrane-integrated nitric oxide reductase cNOR from Pseudomonas aeruginosa was determined. The smaller NorC subunit of cNOR is comprised of 1 trans-membrane helix and a hydrophilic domain, where the heme c is located, while the larger NorB subunit consists of 12 trans-membrane helices, which contain heme b and the catalytically active binuclear center (heme b(3) and non-heme Fe(B)). The roles of the 5 well-conserved glutamates in NOR are discussed, based on the recently solved structure. Glu211 and Glu280 appear to play an important role in the catalytic reduction of NO at the binuclear center by functioning as a terminal proton donor, while Glu215 probably contributes to the electro-negative environment of the catalytic center. Glu135, a ligand for Ca(2+) sandwiched between two heme propionates from heme b and b(3), and the nearby Glu138 appears to function as a structural factor in maintaining a protein conformation that is suitable for electron-coupled proton transfer from the periplasmic region to the active site. On the basis of these observations, the possible molecular mechanism for the reduction of NO by cNOR is discussed. This article is part of a Special Issue entitled: Respiratory Oxidases.
Collapse
|
32
|
Crack JC, Smith LJ, Stapleton MR, Peck J, Watmough NJ, Buttner MJ, Buxton RS, Green J, Oganesyan VS, Thomson AJ, Le Brun NE. Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J Am Chem Soc 2010; 133:1112-21. [PMID: 21182249 PMCID: PMC3117330 DOI: 10.1021/ja109581t] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The reactivity of protein bound iron−sulfur clusters with nitric oxide (NO) is well documented, but little is known about the actual mechanism of cluster nitrosylation. Here, we report studies of members of the Wbl family of [4Fe−4S] containing proteins, which play key roles in regulating developmental processes in actinomycetes, including Streptomyces and Mycobacteria, and have been shown to be NO responsive. Streptomyces coelicolor WhiD and Mycobacterium tuberculosis WhiB1 react extremely rapidly with NO in a multiphasic reaction involving, remarkably, 8 NO molecules per [4Fe−4S] cluster. The reaction is 104-fold faster than that observed with O2 and is by far the most rapid iron−sulfur cluster nitrosylation reaction reported to date. An overall stoichiometry of [Fe4S4(Cys)4]2− + 8NO → 2[FeI2(NO)4(Cys)2]0 + S2− + 3S0 has been established by determination of the sulfur products and their oxidation states. Kinetic analysis leads to a four-step mechanism that accounts for the observed NO dependence. DFT calculations suggest the possibility that the nitrosylation product is a novel cluster [FeI4(NO)8(Cys)4]0 derived by dimerization of a pair of Roussin’s red ester (RRE) complexes.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Falk S, Liu B, Braker G. Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Syst Appl Microbiol 2010; 33:337-47. [DOI: 10.1016/j.syapm.2010.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
34
|
Hitchcock A, Hall SJ, Myers JD, Mulholland F, Jones MA, Kelly DJ. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. MICROBIOLOGY-SGM 2010; 156:2994-3010. [PMID: 20688826 DOI: 10.1099/mic.0.042788-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The zoonotic pathogen Campylobacter jejuni NCTC 11168 uses a complex set of electron transport chains to ensure growth with a variety of electron donors and alternative electron acceptors, some of which are known to be important for host colonization. Many of the key redox proteins essential for electron transfer in this bacterium have N-terminal twin-arginine translocase (TAT) signal sequences that ensure their transport across the cytoplasmic membrane in a folded state. By comparisons of 2D gels of periplasmic extracts, gene fusions and specific enzyme assays in wild-type, tatC mutant and complemented strains, we experimentally verified the TAT dependence of 10 proteins with an N-terminal twin-arginine motif. NrfH, which has a TAT-like motif (LRRKILK), was functional in nitrite reduction in a tatC mutant, and was correctly rejected as a TAT substrate by the tatfind and TatP prediction programs. However, the hydrogenase subunit HydA is also rejected by tatfind, but was shown to be TAT-dependent experimentally. The YedY homologue Cj0379 is the only TAT translocated molybdoenzyme of unknown function in C. jejuni; we show that a cj0379c mutant is deficient in chicken colonization and has a nitrosative stress phenotype, suggestive of a possible role for Cj0379 in the reduction of reactive nitrogen species in the periplasm. Only two potential TAT chaperones, NapD and Cj1514, are encoded in the genome. Surprisingly, despite homology to TorD, Cj1514 was shown to be specifically required for the activity of formate dehydrogenase, not trimethylamine N-oxide reductase, and was designated FdhM.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stephen J Hall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Myers
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonnington, Loughborough LE12 2RD, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
35
|
Ueno T. Protein-Engineering: ein Metalloprotein als bioanorganisches Struktur- und Funktionsmodell. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Ueno T. An Engineered Metalloprotein as a Functional and Structural Bioinorganic Model System. Angew Chem Int Ed Engl 2010; 49:3868-9. [DOI: 10.1002/anie.201000337] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Aiassa V, Barnes AI, Albesa I. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochem Biophys Res Commun 2010; 393:84-8. [DOI: 10.1016/j.bbrc.2010.01.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
38
|
Rational design of a structural and functional nitric oxide reductase. Nature 2009; 462:1079-82. [PMID: 19940850 PMCID: PMC4297211 DOI: 10.1038/nature08620] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/29/2009] [Indexed: 01/13/2023]
Abstract
Protein design provides an ultimate test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. While progress has been made in designing proteins that mimic native proteins structurally1–3, it is more difficult to design functional proteins4–8. In comparison to recent successes in designing non-metalloproteins4,6,7,9,10, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes5,8,11–20, since protein metal binding sites are much more varied than non-metal containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal binding site properties in silico, as many of the parameters for metal binding sites, such as force fields are ill-defined. Therefore, the successful design of a structural and functional metalloprotein will greatly advance the field of protein design and our understanding of enzymes. Here, we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a heme/non-heme FeB center that is remarkably similar to that in the crystal structure. This designed protein also exhibits NOR activity. This is the first designed protein that models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.
Collapse
|
39
|
Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 2009; 73:680-94. [PMID: 19656291 DOI: 10.1111/j.1365-2958.2009.06799.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Escherichia coli NsrR protein is a nitric oxide-sensitive repressor of transcription. The NsrR-binding site is predicted to comprise two copies of an 11 bp motif arranged as an inverted repeat with 1 bp spacing. By mutagenesis we confirmed that both 11 bp motifs are required for maximal NsrR repression of the ytfE promoter. We used chromatin immunoprecipitation and microarray analysis (ChIP-chip) to show that NsrR binds to 62 sites close to the 5' ends of genes. Analysis of the ChIP-chip data suggested that a single 11 bp motif (with the consensus sequence AANATGCATTT) can function as an NsrR-binding site in vivo. NsrR binds to sites in the promoter regions of the fliAZY, fliLMNOPQR and mqsR-ygiT transcription units, which encode proteins involved in motility and biofilm development. Reporter fusion assays confirmed that NsrR negatively regulates the fliA and fliL promoters. A mutation in the predicted 11 bp NsrR-binding site in the fliA promoter impaired repression by NsrR and prevented detectable binding in vivo. Assays on soft-agar confirmed that NsrR is a negative regulator of motility in E. coli K12 and in a uropathogenic strain; surface attachment assays revealed decreased levels of attached growth in the absence of NsrR.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The two-subunit cytochrome bc complex (NorBC) isolated from membranes of the model denitrifying soil bacterium Paracoccus denitrificans is the best-characterized example of the bacterial respiratory nitric oxide reductases. These are members of the super-family of haem-copper oxidases and are characterized by the elemental composition of their active site, which contains non-haem iron rather than copper, at which the reductive coupling of two molecules of nitric oxide to form nitrous oxide is catalysed. The reaction requires the presence of two substrate molecules at the active site along with the controlled input of two electrons and two protons from the same side of the membrane. In the present paper, we consider progress towards understanding the pathways of electron and proton transfer in NOR and how this information can be integrated with evidence for the likely modes of substrate binding at the active site to propose a revised and experimentally testable reaction mechanism.
Collapse
|
41
|
Jiang R, Huang S, Yang J, Deng K, Liu Z. Field applications of a bio-trickling filter for the removal of nitrogen oxides from flue gas. Biotechnol Lett 2009; 31:967-73. [DOI: 10.1007/s10529-009-9969-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 12/01/2022]
|
42
|
Flock U, Lachmann P, Reimann J, Watmough NJ, Adelroth P. Exploring the terminal region of the proton pathway in the bacterial nitric oxide reductase. J Inorg Biochem 2009; 103:845-50. [PMID: 19332356 DOI: 10.1016/j.jinorgbio.2009.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/12/2009] [Accepted: 02/20/2009] [Indexed: 12/01/2022]
Abstract
The c-type nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans is an integral membrane protein that catalyzes NO reduction; 2NO+2e(-)+2H(+)-->N(2)O+H(2)O. It is also capable of catalyzing the reduction of oxygen to water, albeit more slowly than NO reduction. cNORs are divergent members of the heme-copper oxidase superfamily (HCuOs) which reduce NO, do not pump protons, and the reaction they catalyse is non-electrogenic. All known cNORs have been shown to have five conserved glutamates (E) in the catalytic subunit, by P. denitrificans numbering, the E122, E125, E198, E202 and E267. The E122 and E125 are presumed to face the periplasm and the E198, E202 and E267 are located in the interior of the membrane, close to the catalytic site. We recently showed that the E122 and E125 define the entry point of the proton pathway leading from the periplasm into the active site [U. Flock, F.H. Thorndycroft, A.D. Matorin, D.J. Richardson, N.J. Watmough, P. Adelroth, J. Biol. Chem. 283 (2008) 3839-3845]. Here we present results from the reaction between fully reduced NOR and oxygen on the alanine variants of the E198, E202 and E267. The initial binding of O(2) to the active site was unaffected by these mutations. In contrast, proton uptake to the bound O(2) was significantly inhibited in both the E198A and E267A variants, whilst the E202A NOR behaved essentially as wildtype. We propose that the E198 and E267 are involved in terminating the proton pathway in the region close to the active site in NOR.
Collapse
Affiliation(s)
- Ulrika Flock
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
43
|
Charville GW, Hetrick EM, Geer CB, Schoenfisch MH. Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 2008; 29:4039-44. [PMID: 18657857 DOI: 10.1016/j.biomaterials.2008.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/02/2008] [Indexed: 11/25/2022]
Abstract
The ability of nitric oxide (NO)-releasing xerogels to reduce fibrinogen-mediated adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli is described. A negative correlation was observed between NO surface flux and bacterial adhesion for each species tested. For S. aureus and E. coli, reduced adhesion correlated directly with NO flux from 0 to 30 pmol cm(-2)s(-1). A similar dependence for S. epidermidis was evident from 18 to 30 pmol cm(-2)s(-1). At a NO flux of 30 pmol cm(-2)s(-1), surface coverage of S. aureus, S. epidermidis, and E. coli was reduced by 96, 48, and 88%, respectively, compared to non-NO-releasing controls. Polymeric NO release was thus demonstrated to be an effective approach for significantly reducing fibrinogen-mediated adhesion of both gram-positive and gram-negative bacteria in vitro, thereby illustrating the advantage of active NO release as a strategy for inhibiting bacterial adhesion in the presence of pre-adsorbed protein.
Collapse
Affiliation(s)
- Gregory W Charville
- Department of Chemistry, University of North Carolina at Chapel Hill, Caudill and Kenan Laboratories, CB 3290, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
44
|
Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:919-24. [DOI: 10.1016/j.bbabio.2008.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/03/2008] [Accepted: 03/19/2008] [Indexed: 11/18/2022]
|
45
|
Expression and purification of Cgb and Ctb, the NO-inducible globins of the foodborne bacterial pathogen C. jejuni. Methods Enzymol 2008. [PMID: 18237639 DOI: 10.1016/s0076-6879(08)36016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Campylobacter jejuni is a Gram-negative microaerophilic bacterium that occurs as a common gut commensal in many food-producing animals and birds. Contamination of meat during processing is an important route of transmission, and C. jejuni is now recognized as one of the most important causes of bacterial gastroenteritis worldwide. C. jejuni is notable, but not unique, in possessing two different hemoglobins. The first is termed Cgb and is a single-domain hemoglobin (i.e., having no other protein domain or cofactor) with clear structural similarities (3/3) with myoglobin, the heme domain of flavohemoglobins and Vitreoscilla hemoglobin. It is well established that Cgb plays a key role in providing resistance to C. jejuni in the face of NO and other reactive nitrogen species that might be encountered in its environments. The second globin is Ctb, a truncated globin (2/2trHb) in class III, until recently the least well-understood class of these ubiquitous globins. In C. jejuni, both globin genes are members of a small regulon activated by the NssR protein, which acts as an NO sensor and transcriptional regulator. In this contribution, we describe the cloning of both the cgb and ctb genes from C. jejuni chromosomal DNA, construction of expression vectors in E. coli, and a simple purification procedure for each globin. A brief account of the spectroscopic characteristics of both globins is presented.
Collapse
|
46
|
Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities. Meat Sci 2008; 78:492-501. [DOI: 10.1016/j.meatsci.2007.07.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 11/21/2022]
|
47
|
Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 2008; 283:13140-7. [PMID: 18316370 DOI: 10.1074/jbc.m710178200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial nitric-oxide (NO) synthases (bNOSs) are smaller than their mammalian counterparts. They lack an essential reductase domain that supplies electrons during NO biosynthesis. This and other structural peculiarities have raised doubts about whether bNOSs were capable of producing NO in vivo. Here we demonstrate that bNOS enzymes from Bacillus subtilis and Bacillus anthracis do indeed produce NO in living cells and accomplish this task by hijacking available cellular redox partners that are not normally committed to NO production. These "promiscuous" bacterial reductases also support NO synthesis by the oxygenase domain of mammalian NOS expressed in Escherichia coli. Our results suggest that bNOS is an early precursor of eukaryotic NOS and that it acquired its dedicated reductase domain later in evolution. This work also suggests that alternatively spliced forms of mammalian NOSs lacking their reductase domains could still be functional in vivo. On a practical side, bNOS-containing probiotic bacteria offer a unique advantage over conventional chemical NO donors in generating continuous, readily controllable physiological levels of NO, suggesting a possibility of utilizing such live NO donors for research and clinical needs.
Collapse
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Flock U, Thorndycroft FH, Matorin AD, Richardson DJ, Watmough NJ, Adelroth P. Defining the proton entry point in the bacterial respiratory nitric-oxide reductase. J Biol Chem 2007; 283:3839-45. [PMID: 18056717 DOI: 10.1074/jbc.m704615200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial respiratory nitric-oxide reductase (NOR) is a member of the superfamily of O(2)-reducing, proton-pumping, heme-copper oxidases. Even although nitric oxide reduction is a highly exergonic reaction, NOR is not a proton pump and rather than taking up protons from the cytoplasmic (membrane potential-negative) side of the membrane, like the heme-copper oxidases, NOR derives its substrate protons from the periplasmic (membrane potential-positive) side of the membrane. The molecular details of this non-electrogenic proton transfer are not yet resolved, so in this study we have explored a role in a proposed proton pathway for a conserved surface glutamate (Glu-122) in the catalytic subunit (NorB). The effect of substituting Glu-122 with Ala, Gln, or Asp on a single turnover of the reduced NOR variants with O(2), an alternative and experimentally tractable substrate for NOR, was determined. Electron transfer coupled to proton uptake to the bound O(2) is severely and specifically inhibited in both the E122A and E122Q variants, establishing the importance of a protonatable side chain at this position. In the E122D mutant, proton uptake is retained but it is associated with a significant increase in the observed pK(a) of the group donating protons to the active site. This suggests that Glu-122 is important in defining this proton donor. A second nearby glutamate (Glu-125) is also required for the electron transfer coupled to proton uptake, further emphasizing the importance of this region of NorB in proton transfer. Because Glu-122 is predicted to lie near the periplasmic surface of NOR, the results provide strong experimental evidence that this residue contributes to defining the aperture of a non-electrogenic "E-pathway" that serves to deliver protons from the periplasm to the buried active site in NOR.
Collapse
Affiliation(s)
- Ulrika Flock
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Gøtterup J, Olsen K, Knöchel S, Tjener K, Stahnke LH, Møller JKS. Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosylmyoglobin formation in a cured meat model system. Int J Food Microbiol 2007; 120:303-10. [PMID: 17920151 DOI: 10.1016/j.ijfoodmicro.2007.08.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Quantitative determination of catalase, nitrate reductase, nitrite reductase and nitric oxide synthase activities (NOS) was performed on 11 different bacterial strains, mainly staphylococci, isolated from fermented sausages, bacon brine or cured meat products. All except one strain possessed catalase activity in the range from 1.0 to 6.1 micromol min(-1) ml(-1). Ten out of 11 bacteria strains showed nitrate reductase activity in the range between 50 and 796 nmol min(-1) ml(-1) and nine showed nitrite reductase activity in the range between 6 and 42 nmol min(-1) ml(-1). No evidence of NOS activity of the selected strains was detected. In a colour formation assay containing myoglobin all strains affected nitrosylmyoglobin (MbFe(II)NO) formation in assays containing nitrite, whereas only strains having nitrate reductase activity generated MbFe(II)NO in assays containing nitrate as the sole nitrosylating agent. The quantitative nitrate and nitrite reductase activity did not fully explain or correlate well with the observed rate of formation of MbFe(II)NO, which seemed to be more affected by the growth rate of the different strains. The mechanism of the reduction of nitrite into NO of strains not having nitrite reductase activity remains to be fully elucidated, but could be due to a dual-mode action of nitrate reductase capable of acting on nitrate.
Collapse
Affiliation(s)
- Jacob Gøtterup
- University of Copenhagen, Faculty of Life Sciences, Department of Food Science, Food Chemistry, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
50
|
Strube K, de Vries S, Cramm R. Formation of a dinitrosyl iron complex by NorA, a nitric oxide-binding di-iron protein from Ralstonia eutropha H16. J Biol Chem 2007; 282:20292-300. [PMID: 17507380 DOI: 10.1074/jbc.m702003200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Ralstonia eutropha H16, two genes, norA and norB, form a dicistronic operon that is controlled by the NO-responsive transcriptional regulator NorR. NorB has been identified as a membrane-bound NO reductase, but the physiological function of NorA is unknown. We found that, in a NorA deletion mutant, the promoter activity of the norAB operon was increased 3-fold, indicating that NorA attenuates activation of NorR. NorA shows limited sequence similarity to the oxygen carrier hemerythrin, which contains a di-iron center. Indeed, optical and EPR spectroscopy of purified NorA revealed the presence of a di-iron center, which binds oxygen in a similar way as hemerythrin. Diferrous NorA binds two molecules of NO maximally. Unexpectedly, binding of NO to the diferrous NorA required an external reductant. Two different NorA-NO species could be resolved. A minor species (up to 20%) showed an S = (1/2) EPR signal with g( perpendicular) = 2.041, and g( parallel) = 2.018, typical of a paramagnetic dinitrosyl iron complex. The major species was EPR-silent, showing characteristic signals at 420 nm and 750 nm in the optical spectrum. This species is proposed to represent a novel dinitrosyl iron complex of the form Fe(2+)-[NO](2)(2-), i.e. NO is bound as NO(-). The NO binding capacity of NorA in conjunction with its high cytoplasmic concentration (20 mum) suggests that NorA regulates transcription by lowering the free cytoplasmic concentration of NO.
Collapse
Affiliation(s)
- Katja Strube
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | |
Collapse
|