1
|
Sugimoto TN, Jouraku A, Mitsuhashi W. Search for genes gained by horizontal gene transfer in an entomopoxvirus, with special reference to the analysis of the transfer of an ABC transporter gene. Virus Res 2024; 347:199418. [PMID: 38880337 PMCID: PMC11253681 DOI: 10.1016/j.virusres.2024.199418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Although it is generally believed that large DNA viruses capture genes by horizontal gene transfer (HGT), the detailed manner of such transfer has not been fully elucidated. Here, we searched for genes in the coleopteran entomopoxvirus (EV) Anomala cuprea entomopoxvirus (ACEV) that might have been gained by ACEV by HGT. We classified the potential source organisms for HGT into three categories: the host A. cuprea; other organisms, including viruses unrelated to EVs; and organisms with uncertain host attribution. Of the open reading frames (ORFs) of the ACEV genome, 2.1 % were suggested to have been gained from the host by ACEV or its recent ancestor via HGT; 8.7 % were possibly from organisms other than the host, and 3.7 % were possibly from the third category of organisms via HGT. The analysis showed that ACEV contains some interesting ORFs obtained by HGT, including a large ATP-binding cassette protein (ABC transporter) ORF and a tenascin ORF (IDs ACV025 and ACV123, respectively). We then performed a detailed analysis of the HGT of the ACEV large ABC transporter ORF-the largest of the ACEV ORFs. mRNA sequences obtained by RNA-seq from fat bodies-sites of ACEV replication-and midgut tissues-sites of initial infection-of the virus's host A. cuprea larvae were subjected to BLAST analysis. One type of ABC transporter ORF from the fat bodies and two types from the midgut tissues, one of which was identical to that in the fat bodies, had the greatest identity to the ABC transporter ORF of ACEV. The two types from the host had high levels of identity to each other (approximately 95 % nucleotide sequence identity), strongly suggesting that the host ABC transporter group consisting of the two types was the origin of ACV025. We then determined the sequence (12,381 bp) containing a full-length gene of the A. cuprea ABC transporter. It turned out to be a transcription template for the abovementioned mRNA found in both tissues. In addition, we determined a large part (ca. 6.9 kb) of the template sequence for the mRNA found only in the midgut tissues. The results showed that the ACEV ABC transporter ORF is missing parts corresponding to introns of the host ABC transporter genes, indicating that the ORF was likely acquired by HGT in the form of mRNA. The presence of definite duplicated sequences adjacent to the ACEV ABC transporter genes-a sign of LINE-1 retrotransposon-mediated HGT-was not observed. An approximately 2-month ACV025 transcription experiment suggested that the transporter sequence is presumed to be continuously functional. The amino acid sequence of ACV025 suggests that its product might function in the regulation of phosphatide in the host-cell membranes.
Collapse
Affiliation(s)
- Takafumi N Sugimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Wataru Mitsuhashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
2
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
3
|
Das Gupta K, Curson JEB, Tarique AA, Kapetanovic R, Schembri MA, Fantino E, Sly PD, Sweet MJ. CFTR is required for zinc-mediated antibacterial defense in human macrophages. Proc Natl Acad Sci U S A 2024; 121:e2315190121. [PMID: 38363865 PMCID: PMC10895263 DOI: 10.1073/pnas.2315190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion transporter required for epithelial homeostasis in the lung and other organs, with CFTR mutations leading to the autosomal recessive genetic disease CF. Apart from excessive mucus accumulation and dysregulated inflammation in the airways, people with CF (pwCF) exhibit defective innate immune responses and are susceptible to bacterial respiratory pathogens such as Pseudomonas aeruginosa. Here, we investigated the role of CFTR in macrophage antimicrobial responses, including the zinc toxicity response that is used by these innate immune cells against intracellular bacteria. Using both pharmacological approaches, as well as cells derived from pwCF, we show that CFTR is required for uptake and clearance of pathogenic Escherichia coli by CSF-1-derived primary human macrophages. CFTR was also required for E. coli-induced zinc accumulation and zinc vesicle formation in these cells, and E. coli residing in macrophages exhibited reduced zinc stress in the absence of CFTR function. Accordingly, CFTR was essential for reducing the intramacrophage survival of a zinc-sensitive E. coli mutant compared to wild-type E. coli. Ectopic expression of the zinc transporter SLC30A1 or treatment with exogenous zinc was sufficient to restore antimicrobial responses against E. coli in human macrophages. Zinc supplementation also restored bacterial killing in GM-CSF-derived primary human macrophages responding to P. aeruginosa, used as an in vitro macrophage model relevant to CF. Thus, restoration of the zinc toxicity response could be pursued as a therapeutic strategy to restore innate immune function and effective host defense in pwCF.
Collapse
Affiliation(s)
- Kaustav Das Gupta
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - James E. B. Curson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Abdullah A. Tarique
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, Basel, BS4058, Switzerland
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly37380, France
| | - Mark A. Schembri
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Emmanuelle Fantino
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Peter D. Sly
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD4101, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
4
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Zhang X, Zhao Y, Zheng W, Nan B, Fu J, Qiao Y, Zufall RA, Gao F, Yan Y. Genome-wide identification of ATP-binding cassette transporter B subfamily, focusing on its structure, evolution and rearrangement in ciliates. Open Biol 2023; 13:230111. [PMID: 37788709 PMCID: PMC10547551 DOI: 10.1098/rsob.230111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
ATP-binding cassette subfamily B (ABCB) has been implicated in various essential functions such as multidrug resistance, auxin transport and heavy metal tolerance in animals and plants. However, the functions, the genomic distribution and the evolutionary history have not been characterized systematically in lower eukaryotes. As a lineage of highly specialized unicellular eukaryotes, ciliates have extremely diverse genomic features including nuclear dimorphism. To further understand the genomic structure and evolutionary history of this gene family, we investigated the ABCB gene subfamily in 11 ciliates. The results demonstrate that there is evidence of substantial gene duplication, which has occurred by different mechanisms in different species. These gene duplicates show consistent purifying selection, suggesting functional constraint, in all but one species, where positive selection may be acting to generate novel function. We also compare the gene structures in the micronuclear and macronuclear genomes and find no gene scrambling during genome rearrangement, despite the abundance of such scrambling in two of our focal species. These results lay the foundation for future analyses of the function of these genes and the mechanisms responsible for their evolution across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, People's Republic of China
| | - Bei Nan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Jinyu Fu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Goracci L, Nurisso A, Roussel E, Pérès B, Chaptal V, Falson P, Marminon C, Jose J, Le Borgne M, Boumendjel A. Inhibitors of ABCG2-mediated multidrug resistance: Lead generation through computer-aided drug design. Eur J Med Chem 2023; 248:115070. [PMID: 36628850 DOI: 10.1016/j.ejmech.2022.115070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the ability of resistance to structurally and functionally unrelated anticancer drugs. Nowadays, the design of ABCG2 inhibitors as potential agents to enhance the chemotherapy efficacy is an interesting strategy. In this context, we have used computer-aided drug design (CADD) based on available data of a large series of potent inhibitors from our groups as an approach in guiding the design of effective ABCG2 inhibitors. We report therein the results on the use of the FLAPpharm method to elucidate the pharmacophoric features of one of the ABCG2 binding sites involved in the regulation of the basal ATPase activity of the transporter. The predictivity of the model was evaluated by testing three predicted compounds which were found to induce high inhibitory activity of BCRP, in the nanomolar range for the best of them.
Collapse
Affiliation(s)
- Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211, Geneva 4, Switzerland
| | - Emile Roussel
- Université Grenoble Alpes, INSERM, LRB UMR 1039, 38000, Grenoble, France
| | - Basile Pérès
- Université Grenoble Alpes, CNRS, DPM, UMR 5063, 38000, Grenoble, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Joachim Jose
- Westfälische Wilhelms-Universität Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149, Münster, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ahcène Boumendjel
- Université Grenoble Alpes, INSERM, LRB UMR 1039, 38000, Grenoble, France.
| |
Collapse
|
7
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
8
|
Hou W, Xu D, Wang L, Chen Y, Chen Z, Zhou C, Chen Y. Plastic structures for diverse substrates: A revisit of human
ABC
transporters. Proteins 2022; 90:1749-1765. [DOI: 10.1002/prot.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Wen‐Tao Hou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Da Xu
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Liang Wang
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yu Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Zhi‐Peng Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Cong‐Zhao Zhou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yuxing Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
9
|
Rodríguez-Gómez G, Vargas-Mejía P, Silva-Rosales L. Differential Expression of Genes between a Tolerant and a Susceptible Maize Line in Response to a Sugarcane Mosaic Virus Infection. Viruses 2022; 14:v14081803. [PMID: 36016425 PMCID: PMC9415032 DOI: 10.3390/v14081803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
To uncover novel genes associated with the Sugarcane mosaic virus (SCMV) response, we used RNA-Seq data to analyze differentially expressed genes (DEGs) and transcript expression pattern clusters between a tolerant/resistant (CI-RL1) and a susceptible (B73) line, in addition to the F1 progeny (CI-RL1xB73). A Gene Ontology (GO) enrichment of DEGs led us to propose three genes possibly associated with the CI-RL1 response: a heat shock 90-2 protein and two ABC transporters. Through a clustering analysis of the transcript expression patterns (CTEPs), we identified two genes putatively involved in viral systemic spread: the maize homologs to the PIEZO channel (ZmPiezo) and to the Potyvirus VPg Interacting Protein 1 (ZmPVIP1). We also observed the complex behavior of the maize eukaryotic factors ZmeIF4E and Zm-elfa (involved in translation), homologs to eIF4E and eEF1α in A. thaliana. Together, the DEG and CTEPs results lead us to suggest that the tolerant/resistant CI-RL1 response to the SCMV encompasses the action of diverse genes and, for the first time, that maize translation factors are associated with viral interaction.
Collapse
|
10
|
Tordai H, Suhajda E, Sillitoe I, Nair S, Varadi M, Hegedus T. Comprehensive Collection and Prediction of ABC Transmembrane Protein Structures in the AI Era of Structural Biology. Int J Mol Sci 2022; 23:8877. [PMID: 36012140 PMCID: PMC9408558 DOI: 10.3390/ijms23168877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023] Open
Abstract
The number of unique transmembrane (TM) protein structures doubled in the last four years, which can be attributed to the revolution of cryo-electron microscopy. In addition, AlphaFold2 (AF2) also provided a large number of predicted structures with high quality. However, if a specific protein family is the subject of a study, collecting the structures of the family members is highly challenging in spite of existing general and protein domain-specific databases. Here, we demonstrate this and assess the applicability and usability of automatic collection and presentation of protein structures via the ABC protein superfamily. Our pipeline identifies and classifies transmembrane ABC protein structures using the PFAM search and also aims to determine their conformational states based on special geometric measures, conftors. Since the AlphaFold database contains structure predictions only for single polypeptide chains, we performed AF2-Multimer predictions for human ABC half transporters functioning as dimers. Our AF2 predictions warn of possibly ambiguous interpretation of some biochemical data regarding interaction partners and call for further experiments and experimental structure determination. We made our predicted ABC protein structures available through a web application, and we joined the 3D-Beacons Network to reach the broader scientific community through platforms such as PDBe-KB.
Collapse
Affiliation(s)
- Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Erzsebet Suhajda
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
- Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Ian Sillitoe
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Sreenath Nair
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Mihaly Varadi
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Tamas Hegedus
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, 1052 Budapest, Hungary
| |
Collapse
|
11
|
New Insights into Evolution of the ABC Transporter Family in Mesostigma viride, a Unicellular Charophyte Algae. Curr Issues Mol Biol 2022; 44:1646-1660. [PMID: 35723370 PMCID: PMC9164057 DOI: 10.3390/cimb44040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play an important role in driving the exchange of multiple molecules across cell membranes. The plant ABC transporter family is among the largest protein families, and recent progress has advanced our understanding of ABC classification. However, the ancestral form and deep origin of plant ABCs remain elusive. In this study, we identified 59 ABC transporters in Mesostigma viride, a unicellular charophyte algae that represents the earliest diverging lineage of streptophytes, and 1034 ABCs in genomes representing a broad taxonomic sampling from distantly related plant evolutionary lineages, including chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, basal angiosperms, monocots, and eudicots. We classified the plant ABC transporters by comprehensive phylogenetic analysis of each subfamily. Our analysis revealed the ancestral type of ABC proteins as well as duplication and gene loss during plant evolution, contributing to our understanding of the functional conservation and diversity of this family. In summary, this study provides new insight into the origin and evolution of plant ABC transporters.
Collapse
|
12
|
Tian H, Niu H, Luo J, Yao W, Chen X, Wu J, Geng Y, Gao W, Lei A, Gao Z, Tian X, Zhao X, Shi H, Li C, Hua J. Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4030-4043. [PMID: 35343224 DOI: 10.1021/acs.jafc.2c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Goat milk contains a rich source of nutrients, especially unsaturated fatty acids. However, the regulatory mechanism of milk fat and fatty acid synthesis remains unclear. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme catalyzing monounsaturated fatty acid synthesis and is essential for milk lipid metabolism. To explore milk lipid synthesis mechanism in vivo, SCD1-knockout goats were generated through CRISPR/Cas9 technology for the first time. SCD1 deficiency did not influence goat growth or serum biochemistry. Plasma phosphatidylcholines increased by lipidomics after SCD1 knockout in goats. Whole-blood RNA-seq indicated alterations in biosynthesis of unsaturated fatty acid synthesis, cAMP, ATPase activity, and Wnt signaling pathways. In SCD1-knockout goats, milk fat percentage and unsaturated fatty acid levels were reduced but other milk components were unchanged. Milk lipidomics revealed decreased triacylglycerols and diacylglycerols levels, and the differential abundance of lipids were enriched in glycerolipid, glycerophospholipids, and thermogenesis metabolism pathways. In milk fat globules, the expression levels of genes related to fatty acid and TAG synthesis including SREBP1 were reduced. ATP content and AMPK activity were promoted, and p-p70S6K protein level was suppressed in SCD1-knockout goat mammary epithelial cells, suggesting that SCD1 affected milk lipid metabolism by influencing AMPK-mTORC1/p70S6K-SREBP1 pathway. The integrative analysis of gene expression levels and lipidomics of milk revealed a crucial role of SCD1 in glycerolipids and glycerophospholipids metabolism pathways. Our observations indicated that SCD1 regulated the synthesis of milk fat and unsaturated fatty acid in goat by affecting lipid metabolism gene expression and lipid metabolic pathways. These findings would be essential for improving goat milk nutritional value which is beneficial to human health.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Geng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhimin Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiue Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Boughrara W, Chentouf A. The ABCB1, ABCC2 and RALBP1 polymorphisms are associated with carbamazepine response in epileptic patient: a systematic review. Acta Neurol Belg 2022; 122:871-880. [PMID: 35325436 DOI: 10.1007/s13760-022-01920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Despite a dramatic increase in treatment options over the past 30 years, Carbamazepine (CBZ) is still considered the standard of care and the most prescribed initial treatment for focal epilepsy. Hence, the identification of genetic biomarkers that influence the response, resistance and toxicity to CBZ remains a challenge. Several research studies have looked into this to highlight the polymorphisms responsible for the variability in the response to CBZ in patients with epilepsy. The aim of this review is to compare the different results published in the literature The systematic review included thirty-nine studies (2005-2021), Meta-analyses were performed on more than twelve polymorphisms in three genes (ABCB1, ABCC2, RALBP1) involved in CBZ cell transport. The current challenges are to identify other new biomarkers of antiepileptic drugs that can only materialize with large-scale collaborative research efforts.
Collapse
Affiliation(s)
- Wefa Boughrara
- École Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria.
- Service de Cytogénétique et de Biologie Moléculaire de l'Etablissement Hospitalo-Universitaire d'Oran, Oran, Algeria.
- Cité Emir Abdelkader (EX INESSMO) Oran, 31000, Oran, Algeria.
| | - Amina Chentouf
- Service de Neurologie, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
- Laboratoire de Recherche ACCIPED, Faculté de Médecine, Université Oran1, Oran, Algeria
| |
Collapse
|
14
|
Qi Y, Zhang H, Fan H, Wang X, Zhao A, Tian Y, Yang G, Li C, Wei J, Yao W, Hao C. PPARγ/LXRα axis mediated phenotypic plasticity of lung fibroblasts in silica-induced experimental silicosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118272. [PMID: 34718086 DOI: 10.1016/j.envpol.2021.118272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/05/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Silicosis is a disease mainly caused by pulmonary interstitial fibrosis caused by long-term inhalation of dust with excessively high content of free SiO2. Transdifferentiation of lung fibroblasts into myofibroblasts is an important cellular basis for silicosis, but the key transcription factors (TFs) involved in this process are still unclear. In order to explore the biological regulation of transcription factor PPARγ/LXRα in silica-induced pulmonary fibrosis, this study explored the molecular mechanism of PPARγ/LXRα involved in regulating transcription factors related to SiO2-induced lung injury at the cellular level and in animal models. ChIP-qPCR detected that PPARγ directly regulated the transcriptional activity of the LXRα gene promoter, while the PPARγ agonist RSG increased the expression of LXRα. In addition, we demonstrated in the cell model that upregulation of LXRα can inhibit silica-mediated fibroblast transdifferentiation, accompanied by an increase in the expression of SREBF1, PLTP and ABCA1. The results of LXRα silencing experiment matched those of overexpression experiment. These studies explored the role of LXRα in plasticity and phenotypic transformation between lung fibroblasts and myofibroblasts. Therefore, inhibiting or reversing the transdifferentiation of lung fibroblasts to myofibroblasts by intervening PPARγ/LXRα may provide a new therapeutic target for the treatment of silicosis.
Collapse
Affiliation(s)
- Yuanmeng Qi
- School of Public Health, Zhengzhou University, Henan, China
| | - Haichen Zhang
- School of Pharmacy, Zhengzhou University, Henan, China
| | - Hui Fan
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xinyu Wang
- School of Public Health, Zhengzhou University, Henan, China
| | - Ahui Zhao
- Henan Disease Control and Prevention Center, Henan, China
| | - Yangyang Tian
- School of Public Health, Zhengzhou University, Henan, China
| | - Guo Yang
- School of Public Health, Zhengzhou University, Henan, China
| | - Chao Li
- School of Public Health, Zhengzhou University, Henan, China
| | - Jingjing Wei
- School of Public Health, Zhengzhou University, Henan, China
| | - Wu Yao
- School of Public Health, Zhengzhou University, Henan, China
| | - Changfu Hao
- School of Public Health, Zhengzhou University, Henan, China.
| |
Collapse
|
15
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
16
|
Mutants of the white ABCG Transporter in Drosophila melanogaster Have Deficient Olfactory Learning and Cholesterol Homeostasis. Int J Mol Sci 2021; 22:ijms222312967. [PMID: 34884779 PMCID: PMC8657504 DOI: 10.3390/ijms222312967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Drosophila's white gene encodes an ATP-binding cassette G-subfamily (ABCG) half-transporter. White is closely related to mammalian ABCG family members that function in cholesterol efflux. Mutants of white have several behavioral phenotypes that are independent of visual defects. This study characterizes a novel defect of white mutants in the acquisition of olfactory memory using the aversive olfactory conditioning paradigm. The w1118 mutants learned slower than wildtype controls, yet with additional training, they reached wildtype levels of performance. The w1118 learning phenotype is also found in the wapricot and wcoral alleles, is dominant, and is rescued by genomic white and mini-white transgenes. Reducing dietary cholesterol strongly impaired olfactory learning for wildtype controls, while w1118 mutants were resistant to this deficit. The w1118 mutants displayed higher levels of cholesterol and cholesterol esters than wildtype under this low-cholesterol diet. Increasing levels of serotonin, dopamine, or both in the white mutants significantly improved w1118 learning. However, serotonin levels were not lower in the heads of the w1118 mutants than in wildtype controls. There were also no significant differences found in synapse numbers within the w1118 brain. We propose that the w1118 learning defect may be due to inefficient biogenic amine signaling brought about by altered cholesterol homeostasis.
Collapse
|
17
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
18
|
LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep 2021; 48:1-15. [PMID: 34333735 DOI: 10.1007/s11033-021-06603-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Malignant tumors have become the most dangerous disease in recent years. Chemotherapy is the most effective treatment for this disease; however, the problem of drug resistance has become even more common, which leads to the poor prognosis of patients suffering from cancers. Thus, necessary measures should be taken to address these problems at the earliest. Many studies have demonstrated that drug resistance is closely related to the abnormal expressions of long non-coding RNAs (lncRNAs). METHODS AND RESULTS This review aimed to summarize the molecular mechanisms underlying the association of lncRNAs and the development of drug resistance and to find potential strategies for the clinical diagnosis and treatment of cancer drug resistance. Studies showed that lncRNAs can regulate the expression of genes through chromatin remodeling, transcriptional regulation, and post-transcriptional processing. Furthermore, lncRNAs have been reported to be closely related to the occurrence of malignant tumors. In summary, lncRNAs have gained attention in related fields during recent years. According to previous studies, lncRNAs have a vital role in several different types of cancers owing to their multiple mechanisms of action. Different mechanisms have different functions that could result in different consequences in the same disease. CONCLUSIONS LncRNAs closely participated in cancer drug resistance by regulating miRNA, signaling pathways, proteins, cancer stem cells, pro- and ant-apoptosis, and autophagy. lncRNAs can be used as biomarkers of the possible treatment target in chemotherapy, which could provide solutions to the problem of drug resistance in chemotherapy in the future.
Collapse
|
19
|
Pazzola M, Vacca GM, Paschino P, Bittante G, Dettori ML. Novel Genes Associated with Dairy Traits in Sarda Sheep. Animals (Basel) 2021; 11:ani11082207. [PMID: 34438665 PMCID: PMC8388407 DOI: 10.3390/ani11082207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present research was to analyze the variability of 45 SNPs from different genes involved in metabolism and innate immunity to perform an association analysis with the milk yield, composition and milk coagulation traits. A population of 1112 Sarda breed sheep was sampled. Genotyping was generated by a TaqMan Open ArrayTM. Thirty out of the 45 SNPs were polymorphic, and 12 displayed a minor allele frequency higher than 0.05. An association analysis showed that the variability at genes PRKAG3 and CD14 was significantly associated with the daily milk yield. The variability at PRKAG3 was also associated with the protein and casein content, somatic cell score and bacterial score. The variation at the PRKAA2 gene was associated with the milk lactose concentration. The SNPs at CD14 were also associated with the traditional milk coagulation properties, while the SNPs at GHR and GHRHR were associated with kSR, a derived coagulation parameter related to the rate of syneresis. The information provided here is new and increases our knowledge of genotype-phenotype interactions in sheep. Our findings might be useful in appropriate breeding schemes to be set up for the Sarda sheep breed, but these should be confirmed by further studies, possibly performed on independent populations.
Collapse
Affiliation(s)
- Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
- Correspondence: ; Tel.: +39-079229442
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| |
Collapse
|
20
|
Della Sala A, Prono G, Hirsch E, Ghigo A. Role of Protein Kinase A-Mediated Phosphorylation in CFTR Channel Activity Regulation. Front Physiol 2021; 12:690247. [PMID: 34211404 PMCID: PMC8240754 DOI: 10.3389/fphys.2021.690247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed on the apical membrane of epithelial cells, where it plays a pivotal role in chloride transport and overall tissue homeostasis. CFTR constitutes a unique member of the ATP-binding cassette transporter superfamily, due to its distinctive cytosolic regulatory (R) domain carrying multiple phosphorylation sites that allow the tight regulation of channel activity and gating. Mutations in the CFTR gene cause cystic fibrosis, the most common lethal autosomal genetic disease in the Caucasian population. In recent years, major efforts have led to the development of CFTR modulators, small molecules targeting the underlying genetic defect of CF and ultimately rescuing the function of the mutant channel. Recent evidence has highlighted that this class of drugs could also impact on the phosphorylation of the R domain of the channel by protein kinase A (PKA), a key regulatory mechanism that is altered in various CFTR mutants. Therefore, the aim of this review is to summarize the current knowledge on the regulation of the CFTR by PKA-mediated phosphorylation and to provide insights into the different factors that modulate this essential CFTR modification. Finally, the discussion will focus on the impact of CF mutations on PKA-mediated CFTR regulation, as well as on how small molecule CFTR regulators and PKA interact to rescue dysfunctional channels.
Collapse
Affiliation(s)
- Angela Della Sala
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| |
Collapse
|
21
|
Onuma S, Manabe A, Yoshino Y, Matsunaga T, Asai T, Ikari A. Upregulation of Chemoresistance by Mg 2+ Deficiency through Elevation of ATP Binding Cassette Subfamily B Member 1 Expression in Human Lung Adenocarcinoma A549 Cells. Cells 2021; 10:cells10051179. [PMID: 34066059 PMCID: PMC8150369 DOI: 10.3390/cells10051179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Several anticancer drugs including cisplatin (CDDP) induce hypomagnesemia. However, it remains fully uncertain whether Mg2+ deficiency affects chemosensitivity of cancer cells. Here, we investigated the effect of low Mg2+ concentration (LM) on proliferation and chemosensitivity using human lung adenocarcinoma A549 cells. Cell proliferation was reduced by continuous culture with LM accompanied with the elevation of G1 phase proportion. The amounts of reactive oxygen species (ROS) and stress makers such as phosphorylated-ataxia telangiectasia mutated and phosphorylated-p53 were increased by LM. Cell injury was dose-dependently increased by anticancer drugs such as CDDP and doxorubicin (DXR), which were suppressed by LM. Similar results were obtained by roscovitine, a cell cycle inhibitor. These results suggest that LM induces chemoresistance mediated by ROS production and G1 arrest. The mRNA and protein levels of ATP binding cassette subfamily B member 1 (ABCB1) were increased by LM and roscovitine. The LM-induced elevation of ABCB1 and nuclear p38 expression was suppressed by SB203580, a p38 MAPK inhibitor. PSC833, an ABCB1 inhibitor, and SB203580 rescued the sensitivity to anticancer drugs. In addition, cancer stemness properties were suppressed by SB203580. We suggest that Mg2+ deficiency reduces the chemotherapy sensitivity of A549 cells, although it suppresses cell proliferation.
Collapse
Affiliation(s)
- Saki Onuma
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
| | - Aya Manabe
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
22
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
23
|
Identification of prognostic and metastasis-related alternative splicing signatures in hepatocellular carcinoma. Biosci Rep 2021; 40:225701. [PMID: 32627826 PMCID: PMC7364508 DOI: 10.1042/bsr20201001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
As the most common neoplasm in digestive system, hepatocellular carcinoma (HCC) is one of the most important leading cause of cancer deaths worldwide. Its high-frequency metastasis and relapse rate lead to the poor survival of HCC patients. However, the mechanism of HCC metastasis is still unclear. Alternative splicing events (ASEs) have a great effect in cancer development, progression and metastasis. We downloaded RNA sequencing and seven types of ASEs data of HCC samples, in order to explore the mechanism of ASEs underlying tumorigenesis and metastasis of HCC. The data were taken from the The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases. Univariate Cox regression analysis was used to determine a total of 3197 overall survival-related ASEs (OS-SEs). And based on five OS-SEs screened by Lasso regression, we constructed a prediction model with the Area Under Curve of 0.765. With a good reliability of the model, the risk score was also proved to be an independent predictor. Among identified 390 candidate SFs, Y-box protein 3 (YBX3) was significantly correlated with OS and metastasis. Among 177 ASEs, ATP-binding cassette subfamily A member 6 (ABCA6)-43162-AT and PLIN5-46808-AT were identified both associated with OS, bone metastasis and co-expressed with SFs. Then we identified primary bile acid biosynthesis as survival-related (KEGG) pathway by Gene Set Variation Analysis (GSVA) and univariate regression analysis, which was correlated with ABCA6-43162-AT and PLIN5-46808-AT. Finally, we proposed that ABCA6-43162-AT and PLIN5-46808-AT may contribute to HCC poor prognosis and metastasis under the regulation of aberrant YBX3 through the pathway of primary bile acid biosynthesis.
Collapse
|
24
|
HDAC6 inhibition enhances the anti-tumor effect of eribulin through tubulin acetylation in triple-negative breast cancer cells. Breast Cancer Res Treat 2021; 186:37-51. [PMID: 33452951 DOI: 10.1007/s10549-020-06033-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Improved prognosis for triple-negative breast cancer (TNBC) has plateaued and the development of novel therapeutic strategies is required. This study aimed to explore the anti-tumor effect of combined eribulin and HDAC inhibitor (vorinostat: VOR, pan-HDAC inhibitor and ricolinostat: RICO, selective HDAC6 inhibitor) treatment for TNBC. METHODS The effect of eribulin in combination with an HDAC inhibitor was tested in three TNBC cell lines (MDA-MB-231, Hs578T, and MDA-MB-157) and their eribulin-resistant derivatives. The expression of acetylated α-tubulin was analyzed by Western blotting for TNBC cells and immunohistochemical analyses for clinical specimens obtained from breast cancer patients who were treated with eribulin. RESULTS The simultaneous administration of low concentrations (0.2 μM) of VOR or RICO enhanced the anti-tumor effect of eribulin in MDA-MB-231 and Hs578T cells but not in MDA-MB-157 cells. Meanwhile, pretreatment with 5 μM of VOR or RICO enhanced eribulin sensitivity in all three cell lines. Low concentration of VOR or RICO increased acetylated α-tubulin expression in MDA-MB-231 and Hs578T cells. In contrast, whereas 5 μM of VOR or RICO increased the expression of acetylated α-tubulin in MDA-MB-157 cells, low concentrations did not. Eribulin increased the expression of acetylated α-tubulin in MDA-MB-231 and Hs578T cells but not in MDA-MB-157 cells. These phenomena were also observed in eribulin-resistant cells. Immunohistochemical analyses revealed that the expression of acetylated α-tubulin was increased after eribulin treatment in TNBC. CONCLUSIONS HDAC6 inhibition enhances the anti-tumor effect of eribulin through the acetylation of α-tubulin. This combination therapy could represent a novel therapeutic strategy for TNBC.
Collapse
|
25
|
Abstract
Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
26
|
Nethathe B, Abera A, Naidoo V. Expression and phylogeny of multidrug resistance protein 2 and 4 in African white backed vulture (Gyps africanus). PeerJ 2020; 8:e10422. [PMID: 33344079 PMCID: PMC7718797 DOI: 10.7717/peerj.10422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac toxicity in old world vultures is well described in the literature by both the severity of the toxicity induced and the speed of death. While the mechanism of toxicity remains unknown at present, the necropsy signs of gout suggests primary renal involvement at the level of the uric acid excretory pathways. From information in the chicken and man, uric acid excretion is known to be a complex process that involves a combination of glomerular filtration and active tubular excretion. For the proximal convoluted tubules excretion occurs as a two-step process with the basolateral cell membrane using the organic anion transporters and the apical membrane using the multidrug resistant protein to transport uric acid from the blood into the tubular fluid. With uric acid excretion seemingly inhibited by diclofenac, it becomes important to characterize these transporter mechanism at the species level. With no information being available on the molecular characterization/expression of MRPs of Gyps africanus, for this study we used next generation sequencing, and Sanger sequencing on the renal tissue of African white backed vulture (AWB), as the first step to establish if the MRPs gene are expressed in AWB. In silico analysis was conducted using different software to ascertain the function of the latter genes. The sequencing results revealed that the MRP2 and MRP4 are expressed in AWB vultures. Phylogeny of avian MRPs genes confirms that vultures and eagles are closely related, which could be attributed to having the same ancestral genes and foraging behavior. In silico analysis confirmed the transcribed proteins would transports anionic compounds and glucose.
Collapse
Affiliation(s)
- Bono Nethathe
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.,Department of Food Science and Technology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Aron Abera
- Inqaba Biotechnology, Sunnyside, Pretoria, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
27
|
Thomas C, Aller SG, Beis K, Carpenter EP, Chang G, Chen L, Dassa E, Dean M, Duong Van Hoa F, Ekiert D, Ford R, Gaudet R, Gong X, Holland IB, Huang Y, Kahne DK, Kato H, Koronakis V, Koth CM, Lee Y, Lewinson O, Lill R, Martinoia E, Murakami S, Pinkett HW, Poolman B, Rosenbaum D, Sarkadi B, Schmitt L, Schneider E, Shi Y, Shyng SL, Slotboom DJ, Tajkhorshid E, Tieleman DP, Ueda K, Váradi A, Wen PC, Yan N, Zhang P, Zheng H, Zimmer J, Tampé R. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 2020; 594:3767-3775. [PMID: 32978974 PMCID: PMC8386196 DOI: 10.1002/1873-3468.13935] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL, USA
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London South Kensington, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| | | | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Elie Dassa
- Institut Pasteur, Paris Cedex 15, France
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Franck Duong Van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Damian Ekiert
- Department of Cell Biology and Department of Microbiology, New York University School of Medicine, NY, USA
| | - Robert Ford
- Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - I Barry Holland
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Daniel K Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hiroaki Kato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan
| | | | | | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Korea
| | - Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, Switzerland
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Satoshi Murakami
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Daniel Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Balazs Sarkadi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Erwin Schneider
- Department of Biology/Microbial Physiology, Humboldt-University of Berlin, Germany
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, China
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Dirk J Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, AB, Canada
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
| | - Po-Chao Wen
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, NJ, USA
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
| |
Collapse
|
28
|
Goda K, Dönmez-Cakil Y, Tarapcsák S, Szalóki G, Szöllősi D, Parveen Z, Türk D, Szakács G, Chiba P, Stockner T. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion. PLoS Genet 2020; 16:e1009016. [PMID: 33031417 PMCID: PMC7544095 DOI: 10.1371/journal.pgen.1009016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/29/2020] [Indexed: 11/28/2022] Open
Abstract
Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site. ABC transporters are one of the largest membrane protein superfamilies, present in all organisms from archaea to humans. They transport a wide range of molecules including amino acids, sugars, vitamins, nucleotides, peptides, lipids, metabolites, antibiotics, and xenobiotics. ABC transporters energize substrate transport by hydrolyzing ATP in two symmetrically arranged nucleotide binding sites (NBSs). The human multidrug resistance transporter ABCB1 has two active NBSs, and it is generally believed that integrity and cooperation of both sites are needed for transport. Several human ABC transporters, such as the bile salt transporter ABCB11, have one degenerate NBS, which has significantly reduced ATPase activity. Interestingly, unilateral mutations affecting one of the two NBSs completely abolish the function of symmetrical ABC transporters. Here we engineered an ABCB1 variant with a degenerate, ABCB11-like NBS1, which can nevertheless transport substrates. Our results indicate that ABCB1 can mediate active transport with a single active site, questioning the validity of models assuming strictly alternating catalysis.
Collapse
Affiliation(s)
- Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Yaprak Dönmez-Cakil
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, Istanbul, Turkey
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
| | - Zahida Parveen
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dóra Türk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| |
Collapse
|
29
|
Phylogenetic analysis of the ATP-binding cassette proteins suggests a new ABC protein subfamily J in Aedes aegypti (Diptera: Culicidae). BMC Genomics 2020; 21:463. [PMID: 32631258 PMCID: PMC7339416 DOI: 10.1186/s12864-020-06873-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We performed an in-depth analysis of the ABC gene family in Aedes aegypti (Diptera: Culicidae), which is an important vector species of arthropod-borne viral infections such as chikungunya, dengue, and Zika. Despite its importance, previous studies of the Arthropod ABC family have not focused on this species. Reports of insecticide resistance among pests and vectors indicate that some of these ATP-dependent efflux pumps are involved in compound traffic and multidrug resistance phenotypes. RESULTS We identified 53 classic complete ABC proteins annotated in the A. aegypti genome. A phylogenetic analysis of Aedes aegypti ABC proteins was carried out to assign the novel proteins to the ABC subfamilies. We also determined 9 full-length sequences of DNA repair (MutS, RAD50) and structural maintenance of chromosome (SMC) proteins that contain the ABC signature. CONCLUSIONS After inclusion of the putative ABC proteins into the evolutionary tree of the gene family, we classified A. aegypti ABC proteins into the established subfamilies (A to H), but the phylogenetic positioning of MutS, RAD50 and SMC proteins among ABC subfamilies-as well as the highly supported grouping of RAD50 and SMC-prompted us to name a new J subfamily of A. aegypti ABC proteins.
Collapse
|
30
|
Liu Q, Cai P, Guo S, Shi J, Sun H. Identification of a lathyrane-type diterpenoid EM-E-11-4 as a novel paclitaxel resistance reversing agent with multiple mechanisms of action. Aging (Albany NY) 2020; 12:3713-3729. [PMID: 32108588 PMCID: PMC7066893 DOI: 10.18632/aging.102842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (P-gp) and βIII-tubulin overexpression-mediated drug resistance leads to clinical therapy failure for paclitaxel. However, the development of paclitaxel-resistance reversal agents has not had much success. In this study, EM-E-11-4, a lathyrane-type diterpenoid extracted from Euphorbia micractina, demonstrated good anti-MDR (multidrug resistance) activity in paclitaxel-resistant tumor cells overexpressing either P-gp or βIII-tubulin. EM-E-11-4 was able to recover the effects of paclitaxel in inducing arrest at G2/M phase and apoptosis in both A549/Tax (P-gp overexpression) and Hela/βIII (βIII-tubulin overexpression) cells, respectively, at a non-cytotoxic dose. EM-E-11-4 could enable Flutax-1 and Rhodamine 123 be accumulated intracellularly at an accelerating rate in A549/Tax cells by inhibiting the activity of P-gp ATPase, rather than affecting the expression of P-gp. In addition, it also strengthened the effects of paclitaxel in promoting tubulin polymerization and the binding of paclitaxel to microtubules in vitro. It inhibited the expression of βIII-tubulin in Hela/βIII cells in a dose-dependent manner while not exerting influence on the other β-tubulin subtypes. As far as we know, this is the first study to report that a small molecule natural product could specifically inhibit the expression of βIII-tubulin. These results suggest EM-E-11-4 may serve as a promising MDR reversal agent, particularly for patients bearing tumors with high expression of P-gp and βIII-tubulin.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Siwei Guo
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Bickers SC, Sayewich JS, Kanelis V. Intrinsically disordered regions regulate the activities of ATP binding cassette transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183202. [PMID: 31972165 DOI: 10.1016/j.bbamem.2020.183202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
ATP binding cassette (ABC) proteins are a large family of membrane proteins present in all kingdoms of life. These multi-domain proteins are comprised, at minimum, of two membrane-spanning domains (MSD1, MSD2) and two cytosolic nucleotide binding domains (NBD1, NBD2). ATP binding and hydrolysis at the NBDs enables ABC proteins to actively transport solutes across membranes, regulate activities of other proteins, or function as channels. Like most eukaryotic membrane proteins, ABC proteins contain intrinsically disordered regions (IDRs). These conformationally dynamic regions in ABC proteins possess residual structure, are sites of phosphorylation, and mediate protein-protein interactions. Here, we review the role of IDRs in regulating ABC protein activity.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Jonathan S Sayewich
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Zhao J, Xia B, Meng Y, Yang Z, Pan L, Zhou M, Zhang X. Transcriptome Analysis to Shed Light on the Molecular Mechanisms of Early Responses to Cadmium in Roots and Leaves of King Grass ( Pennisetum americanum × P. purpureum). Int J Mol Sci 2019; 20:E2532. [PMID: 31126029 PMCID: PMC6567004 DOI: 10.3390/ijms20102532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/28/2022] Open
Abstract
King grass, a hybrid grass between pearl millet and elephant grass, has many excellent characteristics such as high biomass yield, great stress tolerance, and enormous economic and ecological value, which makes it ideal for development of phytoremediation. At present, the physiological and molecular response of king grass to cadmium (Cd) stress is poorly understood. Transcriptome analysis of early response (3 h and 24 h) of king grass leaves and roots to high level Cd (100 µM) has been investigated and has shed light on the molecular mechanism underlying Cd stress response in this hybrid grass. Our comparative transcriptome analysis demonstrated that in combat with Cd stress, king grass roots have activated the glutathione metabolism pathway by up-regulating glutathione S-transferases (GSTs) which are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damages. In roots, early inductions of phenylpropanoid biosynthesis and phenylalanine metabolism pathways were observed to be enriched in differentially expressed genes (DEGs). Meanwhile, oxidoreductase activities were significantly enriched in the first 3 h to bestow the plant cells with resistance to oxidative stress. We also found that transporter activities and jasmonic acid (JA)-signaling might be activated by Cd in king grass. Our study provided the first-hand information on genome-wide transcriptome profiling of king grass and novel insights on phytoremediation.
Collapse
Affiliation(s)
- Junming Zhao
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634-0318, USA.
| | - Yu Meng
- College of Natural, Applied and Health Sciences, Wenzhou Kean University, Wenzhou 325060, China.
| | - Zhongfu Yang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ling Pan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Man Zhou
- College of Natural, Applied and Health Sciences, Wenzhou Kean University, Wenzhou 325060, China.
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Misra A, Chakrabarti SS, Gambhir IS. New genetic players in late-onset Alzheimer's disease: Findings of genome-wide association studies. Indian J Med Res 2019; 148:135-144. [PMID: 30381536 PMCID: PMC6206761 DOI: 10.4103/ijmr.ijmr_473_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) or sporadic AD is the most common form of AD. The precise pathogenetic changes that trigger the development of AD remain largely unknown. Large-scale genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms in multiple genes which are associated with AD; most notably, these are ABCA7, bridging integrator 1(B1N1), triggering receptor expressed on myeloid cells 2 (TREM2), CD33, clusterin (CLU), complement receptor 1 (CRI), ephrin type-A receptor 1 (EPHA1), membrane-spanning 4-domains, subfamily A (MS4A) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes. The proteins coded by the candidate genes participate in a variety of cellular processes such as oxidative balance, protein metabolism, cholesterol metabolism and synaptic function. This review summarizes the major gene loci affecting LOAD identified by large GWASs. Tentative mechanisms have also been elaborated in various studies by which the proteins coded by these genes may exert a role in AD pathogenesis have also been elaborated. The review suggests that these may together affect LOAD pathogenesis in a complementary fashion.
Collapse
Affiliation(s)
- Anamika Misra
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Indrajeet Singh Gambhir
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
34
|
Li W, Wang S, Qiu C, Liu Z, Zhou Q, Kong D, Ma X, Jiang J. Comprehensive bioinformatics analysis of acquired progesterone resistance in endometrial cancer cell line. J Transl Med 2019; 17:58. [PMID: 30813939 PMCID: PMC6391799 DOI: 10.1186/s12967-019-1814-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Progesterone resistance is a problem in endometrial carcinoma, and its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of progesterone resistance and to identify the key genes and pathways mediating progesterone resistance in endometrial cancer using bioinformatics analysis. METHODS We developed a stable MPA (medroxyprogesterone acetate)-resistant endometrial cancer cell subline named IshikawaPR. Microarray analysis was used to identify differentially expressed genes (DEGs) from triplicate samples of Ishikawa and IshikawaPR cells. PANTHER, DAVID and Metascape were used to perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and cBioPortal for progesterone receptor (PGR) coexpression analysis. GEO microarray (GSE17025) was utilized for validation. The protein-protein interaction network (PPI) and modular analyses were performed using Metascape and Cytoscape. Further validation were performed by real-time polymerase chain reaction (RT-PCR). RESULTS In total, 821 DEGs were found and further analyzed by GO, KEGG pathway enrichment and PPI analyses. We found that lipid metabolism, immune system and inflammation, extracellular environment-related processes and pathways accounted for a significant portion of the enriched terms. PGR coexpression analysis revealed 7 PGR coexpressed genes (ANO1, SOX17, CGNL1, DACH1, RUNDC3B, SH3YL1 and CRISPLD1) that were also dramatically changed in IshikawaPR cells. Kaplan-Meier survival statistics revealed clinical significance for 4 out of 7 target genes. Furthermore, 8 hub genes and 4 molecular complex detections (MCODEs) were identified. CONCLUSIONS Using microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of progesterone resistance. We offered several possible mechanisms of progesterone resistance and identified therapeutic and prognostic targets of progesterone resistance in endometrial cancer.
Collapse
Affiliation(s)
- Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Shufen Wang
- Department of Obstetrics and Gynecology, Ningjin County Planned Parenthood Maternal and Child Health Care Service Center, Dezhou, 253400, Shandong, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Qing Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China.,Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Deshui Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
35
|
Comparative sialotranscriptome analysis of the rare Chinese cicada Subpsaltria yangi, with identification of candidate genes related to host-plant adaptation. Int J Biol Macromol 2019; 130:323-332. [PMID: 30807802 DOI: 10.1016/j.ijbiomac.2019.02.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023]
Abstract
Little is known about the mechanisms underlying the relationship between changes in salivary proteins and the adaptation of insects to different host-plants. To address this knowledge gap, the transcriptional profiles of salivary glands were compared among three populations of the rare cicada Subpsaltria yangi, in which two populations specialize on Zizyphus jujuba var. spinosa, but the population occurring in the Helan (HL) Mountains is locally specialized on the endemic plant Ephedra lepidosperma. The comparisons indicate that genes related to digestion and detoxification are differentially regulated in populations feeding on different plants, possibly reflecting adaptative changes in salivary proteins of S. yangi in response to different host chemistries. In detail, 38 differentially expressed genes and 21 up-regulated genes related to digestion and detoxification were identified respectively in two pairwise comparisons among the populations using different hosts, with some genes exclusively expressed in the HL population. Our results are consistent with the hypothesis that the host plant shift in the HL population was facilitated by differential regulation of genes related to digestion and detoxification. This study provides new information for elucidating the molecular mechanisms underlying the relationship between changed salivary proteins and the adaptability of plant-feeding insects to novel host plants.
Collapse
|
36
|
Peterson B, Weyers M, Steenekamp JH, Steyn JD, Gouws C, Hamman JH. Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) that Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics 2019; 11:pharmaceutics11010033. [PMID: 30654429 PMCID: PMC6359194 DOI: 10.3390/pharmaceutics11010033] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022] Open
Abstract
Many new chemical entities are discovered with high therapeutic potential, however, many of these compounds exhibit unfavorable pharmacokinetic properties due to poor solubility and/or poor membrane permeation characteristics. The latter is mainly due to the lipid-like barrier imposed by epithelial mucosal layers, which have to be crossed by drug molecules in order to exert a therapeutic effect. Another barrier is the pre-systemic metabolic degradation of drug molecules, mainly by cytochrome P450 enzymes located in the intestinal enterocytes and liver hepatocytes. Although the nasal, buccal and pulmonary routes of administration avoid the first-pass effect, they are still dependent on absorption of drug molecules across the mucosal surfaces to achieve systemic drug delivery. Bioenhancers (drug absorption enhancers of natural origin) have been identified that can increase the quantity of unchanged drug that appears in the systemic blood circulation by means of modulating membrane permeation and/or pre-systemic metabolism. The aim of this paper is to provide an overview of natural bioenhancers and their main mechanisms of action for the nasal, buccal, pulmonary and oral routes of drug administration. Poorly bioavailable drugs such as large, hydrophilic therapeutics are often administered by injections. Bioenhancers may potentially be used to benefit patients by making systemic delivery of these poorly bioavailable drugs possible via alternative routes of administration (i.e., oral, nasal, buccal or pulmonary routes of administration) and may also reduce dosages of small molecular drugs and thereby reduce treatment costs.
Collapse
Affiliation(s)
- Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Jan H Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Johan D Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
37
|
Brayboy LM, Knapik LO, Long S, Westrick M, Wessel GM. Ovarian hormones modulate multidrug resistance transporters in the ovary. Contracept Reprod Med 2018; 3:26. [PMID: 30460040 PMCID: PMC6236903 DOI: 10.1186/s40834-018-0076-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/28/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Multidrug resistance transporters (MDRs) are transmembrane proteins that efflux metabolites and xenobiotics. They are highly conserved in sequence and function in bacteria and eukaryotes and play important roles in cellular homeostasis, as well as in avoidance of antibiotics and cancer therapies. Recent evidence also documents a critical role in reproductive health and in protecting the ovary from environmental toxicant effects. The most well understood MDRs are MDR-1 (P-glycoprotein (P-gp) also known as ABCB1) and BCRP (breast cancer resistance protein) and are both expressed in the ovary. We have previously shown that MDR-1 mRNA steady state expression changes throughout the murine estrous cycle, but expression appears to increase in association with the surge in estradiol during proestrus. METHODS Here we test the model that MDR-1 and BCRP are regulated by estrogen, the major hormonal product of the ovary. This was performed by administering 6-week-old female mice either sesame oil (vehicle control) or oral ethinyl estradiol at 1 μg, 10 μg, and 100 μg or PROGESTERONE at 0.25mg, 0.5 mg or 1 mg or a combination of both for 5 days. The mice were then sacrificed, and the ovaries were removed and cleaned. Ovaries were used for qPCR, immunoblotting, and immnunolabeling. RESULTS We found that oral ethinyl estradiol did not influence the steady state mRNA of MDR-1 or BCRP. Remarkably, the effect on mRNA levels neither increased or decreased in abundance upon estrogen exposures. Conversely, we observed less MDR-1 protein expression in the groups treated with 1 μg and 10 μg, but not 100 μg of ethinyl estradiol compared to controls. MDR-1 and BCRP are both expressed in pre-ovulatory follicles. When we tested progesterone, we found that MDR-1 mRNA increased at the dosages of 0.25 mg and 0.5 mg, but protein expression levels were not statistically significant. Combined oral ethinyl estradiol and progesterone significantly lowered both MDR-1 mRNA and protein. CONCLUSIONS Progesterone appears to influence MDR-1 transcript levels, or steady state levels. This could have implications for better understanding how MDR-1 can be modulated during times of toxic exposure. Understanding the normal physiology of MDR-1 in the ovary will expand the current knowledge in cancer biology and reproduction.
Collapse
Affiliation(s)
- Lynae M Brayboy
- Department of Obstetrics and Gynecology then Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905 USA
- Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903 USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912 USA
- Biological Basis of Behavior Department, University of Pennsylvania, Room 122 425 South University Avenue, Philadelphia, PA 19104 USA
| | - Laura O Knapik
- Department of Obstetrics and Gynecology then Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905 USA
| | | | - Mollie Westrick
- Biological Basis of Behavior Department, University of Pennsylvania, Room 122 425 South University Avenue, Philadelphia, PA 19104 USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912 USA
| |
Collapse
|
38
|
ElFayoumi RI, Hagras MM, Abozenadaha A, Gari M, Abosoudah I, Shinawi T, Mirza T, Bawazir W. The influence of polymorphisms in the drug transporter, ABCB1 on the toxicity of glucocorticoids in Saudi children with acute lymphoblastic leukaemia. Pharmacol Rep 2018; 71:90-95. [PMID: 30508724 DOI: 10.1016/j.pharep.2018.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Glucocorticoids play essential roles in the treatment of childhood acute lymphoblastic leukaemia (ALL); however, treatment with these agents can result in severe side-effects. This study, the first of its kind in a Saudi population, investigates associations of ABCB1 gene polymorphisms (pharmacodynamics and pharmacokinetic) with the development of toxicity and side effects (glucose abnormality, liver toxicity and infection) in a small population of Saudi children with ALL. METHODS Three single nucleotide polymorphisms (SNPs) of the ABCB1 gene (rs 3213619 T129C, rs 2032582 G2677T and rs1045642 C3435T) were analysed in 70 Saudi children with ALL and 60 control subjects. Participants were treated according to the ALL 2000 study protocol. Toxicities were assessed and associations with genotypes were evaluated according to Common Toxicity Criteria (NCI-CTC). RESULTS Significant associations were observed among carriers and the mutated genotype C3435T (ABCB1), which had an incidence of infection (p = 0.05). Although no correlations were found between liver toxicity and glucose abnormalities for patients carrying ABCB1 SNPs, risk factors for liver toxicity were elevated by a factor of three for patients carrying the SNP G2677T, OR 3.00 (1.034-8.702). The risk factor of glucose abnormality toxicity for the patients carring T129C were increased three times OR 3.06 (0.486-19.198). CONCLUSIONS In terms of infection incidence, polymorphism C3435T may contribute to potential life-threatening infections during paediatric ALL therapy, through glucocorticoid usage.
Collapse
Affiliation(s)
- Refaat I ElFayoumi
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Magda M Hagras
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Adel Abozenadaha
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh Gari
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Abosoudah
- Pediatric Oncology Department, King Fisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Thoraia Shinawi
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talaat Mirza
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Bawazir
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Allegra S, Cardellino CS, Fatiguso G, Cusato J, De Nicolò A, Avataneo V, Bonora S, D'Avolio A, Di Perri G, Calcagno A. Effect of ABCC2 and ABCG2 Gene Polymorphisms and CSF-to-Serum Albumin Ratio on Ceftriaxone Plasma and Cerebrospinal Fluid Concentrations. J Clin Pharmacol 2018; 58:1550-1556. [PMID: 29873816 DOI: 10.1002/jcph.1266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
We measured ceftriaxone pharmacokinetics in patients' plasma and cerebrospinal fluid (CSF) and assessed the influence of biometric, demographic, genetic (ABCB1, ABCC2, ABCB11, ABCG2, and SLCO1A2 polymorphisms) and pathological features. Adult patients with signs and symptoms of central nervous system infections, receiving intravenous ceftriaxone, were enrolled. Ceftriaxone plasma and CSF concentrations were measured by high-precision liquid chromatographic methods; allelic discrimination was performed by real-time polymerase chain reaction. Forty-three patients were included: median ceftriaxone maximal concentration was 15,713 ng/mL in plasma and 3512 ng/mL in CSF with a CSF-to-plasma ratio of 0.3. ABCC2 1249 rs2273697 (P = .027) and ABCG2 1194+928 rs13120400 (P = .015) variants were significantly associated with CSF concentrations and CSF-to-plasma ratios. At linear regression analysis, CSF-to-serum albumin ratio was an independent predictor of ceftriaxone CSF concentrations (P = .001; also in those with intact blood-brain barrier: P = .031) and CSF-to-plasma ratio (P = .001; also in those with blood-brain barrier impairment: P = .040). We here report the role of transporters' genetic variants as well as of blood-brain barrier permeability in predicting ceftriaxone exposure in the central nervous system.
Collapse
Affiliation(s)
- Sarah Allegra
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Chiara Simona Cardellino
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Giovanna Fatiguso
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Jessica Cusato
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Amedeo De Nicolò
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Valeria Avataneo
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Stefano Bonora
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Antonio D'Avolio
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Giovanni Di Perri
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
40
|
Nasiri H, Valedkarimi Z, Aghebati‐Maleki L, Majidi J. Antibody‐drug conjugates: Promising and efficient tools for targeted cancer therapy. J Cell Physiol 2018; 233:6441-6457. [DOI: 10.1002/jcp.26435] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Hadi Nasiri
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Zahra Valedkarimi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Leili Aghebati‐Maleki
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Jafar Majidi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
41
|
Nakagawa H, Toyoda Y, Albrecht T, Tsukamoto M, Praetorius M, Ishikawa T, Kamiya K, Kusunoki T, Ikeda K, Sertel S. Are human ATP-binding cassette transporter C11 and earwax associated with the incidence of cholesteatoma? Med Hypotheses 2018; 114:19-22. [PMID: 29602456 DOI: 10.1016/j.mehy.2018.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/18/2017] [Accepted: 02/23/2018] [Indexed: 01/17/2023]
Abstract
Cholesteatoma is an ear disease based on a locally destructive noncancerous conglomerate of epidermis and keratin debris. Abnormal growth of stratified keratinized squamous epithelium in the temporal bone causes destruction of the outer and middle ear, potentially leading to hearing impairment, facial palsy, vertigo, lateral sinus thrombosis, and intracranial complications. Although cholesteatoma is effectively treated by surgical resection (mastoidectomy), the lack of effective and nonsurgical therapies potentially results in fatal consequences, establishing the need for a comprehensive investigation of cholesteatoma pathogenesis. Although its etiology is still being debated, interestingly, we found that the trend associated with the 538G allele frequency of the adenosine triphosphate-binding cassette transporter C11 (ABCC11) gene, the determinant of wet-type earwax, and ethnic groups was similar to that between the incidence of cholesteatoma and ethnic groups (countries). The incidences of cholesteatoma in Europe (Denmark, Finland, and Scotland) are higher than in East Asia (Japan), and the frequencies of the ABCC11 538G allele in African, American, and European (Finland and Scotland) populations are higher than those in East Asian populations (Japan). Additionally, a single-nucleotide polymorphism in the ABCC11 gene (rs17822931, 538G > A; Gly180Arg) is closely related to earwax morphotypes. While earwax is often beneficial to ear health, it is sometimes harmful in cases where it causes hearing impairment. Based on independent findings of associations between ABCC11 and the physiological environment of the auditory canal, we hypothesize a possible link between ABCC11, earwax, and the incidence of cholesteatoma.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tobias Albrecht
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Megumi Tsukamoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Mark Praetorius
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takeshi Kusunoki
- Department of Otorhinolaryngology, Juntendo University of Medicine, Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi, Shizuoka 410-2295, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Serkan Sertel
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; HNO Praxis Prof. Sertel, Rottstraße 39, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
42
|
Oba T, Izumi H, Ito KI. ABCB1 and ABCC11 confer resistance to eribulin in breast cancer cell lines. Oncotarget 2018; 7:70011-70027. [PMID: 27588398 PMCID: PMC5342531 DOI: 10.18632/oncotarget.11727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022] Open
Abstract
This study aimed to elucidate the mechanisms underlying the resistance of breast cancer to eribulin. Seven eribulin-resistant breast cancer cell lines (MCF7/E, BT474/E, ZR75-1/E, SKBR3/E, MDA-MB-231/E, Hs578T/E, and MDA-MB-157/E) were established. mRNA and protein expression of ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 11 (ABCC11) increased in all eribulin-resistant cell lines compared to the parental cell lines. When ABCB1 or ABCC11 expression was inhibited by small interfering RNA in MCF7/E, BT474/E, and MDA-MB-231/E cells, eribulin sensitivity was partially restored. Moreover, eribulin resistance was attenuated additively by inhibiting ABCB1 and ABCC11 in MCF7/E cells. Additionally, overexpression of exogenous ABCB1 or ABCC11 in HEK293T cells conferred resistance to eribulin. MCF7/E and MDA-MB-231/E cells showed cross-resistance to paclitaxel, doxorubicin, and fluorouracil. Inhibition of ABCB1 partially restored paclitaxel and doxorubicin sensitivity. Partial restoration of fluorouracil sensitivity was induced by inhibiting ABCC11 in MCF7/E and MDA-MB-231/E cells. Both ABCB1 and ABCC11 are involved in the development of eribulin resistance in breast cancer cells in vitro regardless of the breast cancer subtype. Thus, ABCB1 and ABCC11 expression may be used as a biomarker for predicting the response to eribulin in patients with breast cancer. Concomitant inhibition of ABCB1 and ABCC11 might help enhance the antitumor effects of eribulin.
Collapse
Affiliation(s)
- Takaaki Oba
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
43
|
Genetic polymorphisms and response to 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 2018; 7:66790-66808. [PMID: 27527855 PMCID: PMC5341838 DOI: 10.18632/oncotarget.11053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022] Open
Abstract
Clinical resistance to chemotherapy is one of the major problems in breast cancer treatment. In this study we analyzed possible impact of 22 polymorphic variants on the treatment response in 324 breast cancer patients. Selected genes were involved in FAC chemotherapy drugs transport (ABCB1, ABCC2, ABCG2, SLC22A16), metabolism (CYP1B1, CYP2C19, GSTT1, GSTM1, GSTP1, TYMS, MTHFR, DPYD), drug-induced damage repair (ERCC1, ERCC2, XRCC1) and involved in regulation of DNA damage response and cell cycle control (ATM, TP53). Apart from preexisting metastases three polymorphic variants were independent prognostic high risk factors of lack of response to FAC chemotherapy. Our results showed that the response to treatment depended of the variability in genes engaged in drugs’ transport (ABCC2 c.-24C>T, ABCB1 p.Ser893Ala/Thr) and in DNA repair machinery (ERCC2 p.Lys751Gln). Furthermore, the growing number of high-risk genotypes was reflected in gradual increase in risk of the non-responsiveness to treatment- from OR 2.68 for presence of two genotypes to OR 9.93 for carriers of all three negative genotypes in the group of all patients. Similar gene-dosage effect was observed in the subgroup of TNBCs. Also, TFFS significantly shortened with the increasing number of high-risk genotypes, with median of 54.4 months for carriers of one variant, to 51.5 and 34.9 months for the carriers of two and three genotypes, respectively. Our results demonstrate that results of cancer treatment are the effect of many clinical and genetic factors. It seems that multifactorial polymorphic models could be a potentially useful tool in personalization of cancer therapies. The novelty in our model is the over representation of triple negative breast cancer (TNBC) patients among the carriers of all unfavorable polymorphic variants. This finding contributes to the elucidation of the mechanisms of drug resistance in this subgroup of breast cancer patients.
Collapse
|
44
|
Stocchi L, Giardina E, Varriale L, Sechi A, Vagnini A, Parri G, Valentini M, Capalbo M. Can Tangier disease cause male infertility? A case report and an overview on genetic causes of male infertility and hormonal axis involved. Mol Genet Metab 2018; 123:43-49. [PMID: 29198592 DOI: 10.1016/j.ymgme.2017.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022]
Abstract
Tangier disease is an autosomal recessive disorder caused by mutations in the ABCA1 gene and characterized by the accumulation of cholesteryl ester in various tissues and a near absence of high-density lipoprotein. The subject in this investigation was a 36-year-old Italian man with Tangier disease. He and his wife had come to the In Vitro Fertilization Unit, Pesaro Hospital (Azienda Ospedaliera Ospedali Riuniti Marche Nord) seeking help regarding fertility issues. The man was diagnosed with severe oligoasthenoteratozoospermia. Testosterone is the sex hormone necessary for spermatogenesis and cholesterol is its precursor; hence, we hypothesized that the characteristic cholesterol deficiency in Tangier disease patients could compromise their fertility. The aim of the study was to therefore to determine if there is an association between Tangier disease and male infertility. After excluding viral, infectious, genetic and anatomical causes of the subject's oligoasthenoteratozoospermia, we performed a hormonal analysis to verify our hypothesis. The patient was found to be negative for frequent bacteria and viruses. The subject showed a normal male karyotype and tested negative for Yq microdeletions and Cystic Fibrosis Transmembrane Conductance Regulator gene mutations. A complete urological examination was performed, and primary hypogonadism was also excluded. Conversely, hormonal analyses showed that the subject had a high level of follicle stimulating hormone and luteinizing hormone, low total testosterone and a significant decline in inhibin B. We believe that the abnormally low cholesterol levels typically found in subjects with Tangier disease may result in a reduced testosterone production which in turn could affect the hormonal axis responsible for spermatogenesis leading to a defective maturation of spermatozoa.
Collapse
Affiliation(s)
- Laura Stocchi
- Pathophysiology of Reproduction, U.O.C., IVF Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Emiliano Giardina
- Laboratory of Genomic Medicine-UILDM, Fondazione Santa Lucia IRCCS, Univ. Tor Vergata; Rome, Italy.
| | - Luigia Varriale
- Department of Clinical Pathology, U.O.S.D. D.A.L.T., Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Annalisa Sechi
- Regional Center for Rare Diseases, Academic Hospital of Udine, Italy.
| | - Andrea Vagnini
- Department of Clinical Pathology, U.O.S.D. D.A.L.T., Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Gianni Parri
- Department of Urology, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Massimo Valentini
- Department of Clinical Pathology, U.O.S.D. D.A.L.T., Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| | - Maria Capalbo
- General Director of Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy.
| |
Collapse
|
45
|
Kim H, Yim B, Kim J, Kim H, Lee YM. Molecular characterization of ABC transporters in marine ciliate, Euplotes crassus: Identification and response to cadmium and benzo[a]pyrene. MARINE POLLUTION BULLETIN 2017; 124:725-735. [PMID: 28139231 DOI: 10.1016/j.marpolbul.2017.01.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
ATP-binding cassette (ABC) transporters participate in transporting various substances, including xenobiotics, in or out of cells. However, their genetic information and function in ciliates remain still unclear. In this study, we sequenced and characterized two ABC transporter genes (EcABCB and EcABCC), and investigated the effect of cadmium (Cd) and benzo[a]pyrene (B[a]P) on their function and gene expression, using efflux assay and real-time reverse transcription-polymerase chain reaction (qRT-PCR), respectively, in the marine ciliate, Euplotes crassus. Sequencing analysis and efflux assay showed that EcABCB and EcABCC are typical ABC transporters, possessing conserved function. Exposure to Cd (≥5mg/L) and B[a]P (≥50.5μg/L) enhanced accumulation of a substrate. A significant increase in the expression of EcABCB and EcABC mRNA was observed at lower concentration in response to Cd and B[a]P. Our findings indicate that Cd and B[a]P could inhibit the efflux function of ABC transporters, leading to cellular toxicity in the ciliate.
Collapse
Affiliation(s)
- Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
46
|
Abstract
The ATP binding cassette containing transporters are a superfamily of integral membrane proteins that translocate a wide range of substrates. The subfamily B members include the biologically important multidrug resistant (MDR) protein and the transporter associated with antigen processing (TAP) complex. Substrates translocated by this subfamily include drugs, lipids, peptides and iron. We have constructed a comprehensive set of comparative models for the transporters from eukaryotes and used these to study the effects of sequence divergence on the substrate translocation pathway. Notably, there is very little structural divergence between the bacterial template structure and the more distantly related eukaryotic proteins illustrating a need to conserve transporter structure. By contrast different properties have been adopted for the translocation pathway depending on the substrate type. A greater level of divergence in electrostatic properties is seen with transporters that have a broad substrate range both within and between species, while a high level of conservation is observed when the substrate range is narrow. This study represents the first effort towards understanding effect of evolution on subfamily B ABC transporters in the context of protein structure and biophysical properties. Abbreviations A. thaliana Arabidopsis thaliana D. melanogaster Drosophilia melanogaster S. aureus Staphylococcus aureus ABC ATP binding cassette TAP Transporter associated with antigen processing.
Collapse
Affiliation(s)
- J.U. Flanagan
- ARC Special Research Centre for Functional and Applied Genomics, Level 5, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - T. Huber
- School of Molecular and Microbial Science, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
47
|
Tsukamoto M, Sato S, Satake K, Miyake M, Nakagawa H. Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4. Int J Mol Sci 2017; 18:ijms18071435. [PMID: 28677646 PMCID: PMC5535926 DOI: 10.3390/ijms18071435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 01/11/2023] Open
Abstract
Broad-spectrum resistance in cancer cells is often caused by the overexpression of ABC transporters; which varies across individuals because of genetic single-nucleotide polymorphisms (SNPs). In the present study; we focused on human ABCC4 and established cells expressing the wild-type (WT) or SNP variants of human ABCC4 using the Flp-In™ system (Invitrogen, Life Technologies Corp, Carlsbad, CA, USA) based on Flp recombinase-mediated transfection to quantitatively evaluate the effects of nonsynonymous SNPs on the drug resistance profiles of cells. The mRNA levels of the cells expressing each ABCC4 variant were comparable. 3-(4,5-Dimethyl-2-thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay clearly indicated that the EC50 values of azathioprine against cells expressing ABCC4 (WT) were 1.4–1.7-fold higher than those against cells expressing SNP variants of ABCC4 (M184K; N297S; K304N or E757K). EC50 values of 6-mercaptopurine or 7-Ethyl-10-hydroxy-camptothecin (SN-38) against cells expressing ABCC4 (WT) were also 1.4–2.0- or 1.9-fold higher than those against cells expressing the SNP variants of ABCC4 (K304N or E757K) or (K304N; P403L or E757K); respectively. These results indicate that the effects of nonsynonymous SNPs on the drug resistance profiles of cells expressing ABCC4 can be quantitatively evaluated using the Flp-In™ system.
Collapse
Affiliation(s)
- Megumi Tsukamoto
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan.
| | - Shiori Sato
- Department of Applied Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| | - Kazuhiro Satake
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan.
| | - Mizuki Miyake
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan.
| | - Hiroshi Nakagawa
- Department of Applied Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
48
|
Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what's limiting? CHINESE JOURNAL OF CANCER 2017. [PMID: 28629389 PMCID: PMC5477375 DOI: 10.1186/s40880-017-0217-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clinical studies suggest that specific flavonoids are chemo-preventive and cytotoxic against various cancers via a multitude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiological studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug–drug interactions, and metabolic instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increasing the likelihood of flavonoids being used as chemo-preventive drugs in the clinic. In this review, we summarize the most important challenges and efforts that are being made to surmount these challenges.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, 11432, USA
| | - Amit K Tiwari
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA. .,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
49
|
Candelaria PV, Rampoldi A, Harbuzariu A, Gonzalez-Perez RR. Leptin signaling and cancer chemoresistance: Perspectives. World J Clin Oncol 2017; 8:106-119. [PMID: 28439492 PMCID: PMC5385432 DOI: 10.5306/wjco.v8.i2.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major health problem and currently is endemic around the world. Obesity is a risk factor for several different types of cancer, significantly promoting cancer incidence, progression, poor prognosis and resistance to anti-cancer therapies. The study of this resistance is critical as development of chemoresistance is a serious drawback for the successful and effective drug-based treatments of cancer. There is increasing evidence that augmented adiposity can impact on chemotherapeutic treatment of cancer and the development of resistance to these treatments, particularly through one of its signature mediators, the adipokine leptin. Leptin is a pro-inflammatory, pro-angiogenic and pro-tumorigenic adipokine that has been implicated in many cancers promoting processes such as angiogenesis, metastasis, tumorigenesis and survival/resistance to apoptosis. Several possible mechanisms that could potentially be developed by cancer cells to elicit drug resistance have been suggested in the literature. Here, we summarize and discuss the current state of the literature on the role of obesity and leptin on chemoresistance, particularly as it relates to breast and pancreatic cancers. We focus on the role of leptin and its significance in possibly driving these proposed chemoresistance mechanisms, and examine its effects on cancer cell survival signals and expansion of the cancer stem cell sub-populations.
Collapse
|
50
|
Miranda RR, Bezerra Jr AG, Oliveira Ribeiro CA, Randi MAF, Voigt CL, Skytte L, Rasmussen KL, Kjeldsen F, Filipak Neto F. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol In Vitro 2017; 40:134-143. [DOI: 10.1016/j.tiv.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|